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ABSTRACT 

Time-series anomaly detection is crucial for identifying unusual patterns that deviate from 

expected behavior in temporal data, enabling early intervention in diverse fields such as fi-

nance, healthcare, and cybersecurity. This paper proposes a novel anomaly detection 

method based on deep learning models including Generative Adversarial Networks (GANs) 

and Variational Autoencoders (VAEs). The proposed GAN-VAE model combines the strengths 

of GAN and VAE to effectively capture the distribution of time series data and optimize se-

quence mapping in latent space, achieving high accuracy in the reconstruction of normal 

time-series. Anomalies can then be detected by identifying abnormally large reconstruction 

errors. To enhance the convergence of the GAN-VAE model in training, a sequential training 

method is proposed that trains the encoder, decoder, and discriminator in an alternating 

fashion. The effectiveness of the proposed anomaly detection method is verified through 

real-world time series datasets.  

 

KEYWORDS 

Anomaly detection; GAN-VAE; Sequential training 

 

1. Introduction  

The proliferation of data, driven by significant advances in data collection, transmission, storage, 
and computation, signals the advent of the "big data" era. Through in-depth analysis and anomaly 
detection of these large-scale datasets, potential patterns and valuable information can be uncov-
ered. On the one hand, erroneous information in the data, if not effectively addressed, can nega-
tively impact the final scientific analysis. For instance, in information analytics, unprocessed misin-
formation may lead to incorrect intelligence conclusions, thereby affecting the accuracy and relia-
bility of decision-making (Liu et al., 2024). On the other hand, anomalies may provide accurate indi-
cations of unusual events or behaviors that are of interest. As noted in (De Almeida Parizotto et al., 
2020), “while in many fields outliers can simply be discarded as being exceptions, in bibliometrics 
the extreme values represent the high-end of research performance and therefore deserve special 
attention.” 
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Time series anomaly detection, as a key step in data analysis, has the core task of accurately iden-
tifying abnormal behavior or events from normal time series data (Zehra et al., 2023). Typically, time 
series anomalies can be classified into three categories (Cui & Wang, 2017): 1) Point anomalies, 
which are individual anomalous data points that do not conform to the normal behavior of the time 
series as a whole (e.g., very large/very small outliers). 2) Contextual anomalies, which are anomalous 
in a particular context and may not be anomalous in a different context. 3) Collective anomalies, 
which constitute a collection of anomalous data points, such as change points (Zhu et al., 2020). In 
this paper, we aim to develop an anomaly detector that is able to detect all three types of anomalies 
in large-scale time series data, which may consist of diverse time-series with different patterns. 

Existing anomaly detection approaches can be classified into two categories, i.e., statistical ap-
proaches and deep learning (DL) based approaches. Statistical approaches for anomaly detection 
encompass a variety of underlying principles. For instance, the K-Nearest Neighbor (KNN) approach 
to anomaly detection assigns anomaly scores by leveraging the distances to the nearest k neighbors' 
samples (Liu et al., 2017). Conversely, the Autoregressive Moving Average (ARIMA) technique mod-
els temporal data trends and evaluates discrepancies between forecasted and actual observations 
(Tron et al., 2018). The Local Outlier Factor (LOF) was adopted by Xu et al. (2021), and identifies 
anomalies through analyzing the discrepancy in local density around a data point in comparison to 
its neighboring points. Notwithstanding, the efficacy of the KNN methodology is significantly influ-
enced by the choice of k-value, and both the ARIMA and LOF frameworks are noted for their sub-
stantial demands on computational resources and processing time, particularly in the context of 
voluminous datasets. This computational intensity becomes a pronounced challenge in the realm of 
large-scale network traffic data, where these statistical techniques may not suffice in fulfilling the 
industrial benchmarks for anomaly detection precision (Niu et al., 2020). 

DL based anomaly detection approaches seek for DL models to learn the inherent patterns of 
time-series data, from which a violation of the learned pattern can be declared as an anomaly. In 
supervised learning tasks that rely on labeled data, anomaly detection can achieve high accuracy if 
sufficient and accurate labels are provided. However, labeling data can be a challenging and re-
source-intensive task. In the meanwhile, supervised-learning models often have limited generalizing 
capability to new and unseen anomaly data, which is not uncommon (Chen et al., 2023).  

For this reason, DL models with unsupervised learning have received much attention. For instance, 
Qin et al. (2018) used LSTM trained to predict future moments and detect anomalies from the re-
siduals between predicted and actual values. Zavrak and Iskefiyeli (2020) used a Variational Autoen-
coder (VAE) for anomaly detection, using the reconstruction error as the anomaly score, and any 
data with a score greater than a threshold is considered anomalous. Geiger et al. (2020) leveraged 
a Generative Adversarial Network (GAN) to compute reconstruction errors using both point-wise 
and window-based methods, deriving anomaly scores by combining the outputs of the generator 
and discriminator for anomaly detection. Zhu et al. (2019) utilised the deep feature extraction ca-
pability of the LSTM-GAN network by performing feature extraction on the detection data and then 
sending it to the generator for reconstruction, and the reconstruction error of the reconstructed 
and detected data with the output of the discriminator is used as the criterion for anomaly detection. 
Xu et al. (2024) proposed a calibrated one-class classification method to enhance the robustness 
and accuracy of unsupervised time series anomaly detection through uncertainty modeling and na-
tive anomaly calibration. Wang et al. (2024) integrated the frequency feature of time series into VAE 
to increase the accuracy of the reconstruction of normal data, facilitating more accurate anomaly 
detections.  

As discussed above, many different types of anomaly detection techniques have been developed 
to tackle the challenges of time series anomaly detection. Of these techniques, conventional statis-
tical methods tend to not scale well with the amount of data. Supervised learning-based approaches 
face the difficulties of lacking anomaly labels. Unsupervised learning-based approach reflects a 
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promising trend for large-scale time series anomaly detection. In this work, we propose a new GAN-
VAE model based on gated recurrent units (GRUs) for time-series anomaly detection. The proposed 
model consists of three parts: encoder, decoder and discriminator. In this model, the core idea is to 
first utilize the VAE network for data reconstruction, and then adopt the reconstruction error as a 
pivotal criterion for anomaly detection. The GAN network adaptively captures the probability distri-
bution of normal data within the latent space and can enhance the VAE network's capability of time-
series reconstruction. Furthermore, a sequential training procedure is employed for the encoder, 
decoder, and discriminator components of the GAN-VAE architecture. This strategy is pivotal in fine-
tuning each segment of the GAN-VAE framework, consequently enhancing the efficiency of the 
model's convergence. 

2. Preliminaries of time-series anomaly detection 

For unsupervised DL-based time series anomaly detection, a common approach is to train a DL 
model to predict or reconstruct the time-series of interest. By comparing the predicted/recon-
structed values with the true values, anomalies can be declared when the perdition/reconstruction 
errors become exceptionally large. In this procedure, the DL model used to model the pattern of the 
data plays a central role. In this section, we first briefly introduce the DL models commonly used for 
time-series anomaly detection as well as the key DL models for our proposed approach, and then 
discuss the operational procedures of the classical algorithms for anomaly detection. 

2.1. Model fundamentals 

2.1.1. Long Short-Term Memory (LSTM) Model 

Long Short Term Memory Network (LSTM), a variant of the recurrent neural network, contains 
three gates, i.e., forgetting gate, input gate and output gate. The information flow of LSTM can be 
represented as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1. 𝑎) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1. 𝑏) 

𝐶
~

𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (1. 𝑐) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶
~

𝑡 (1. 𝑑) 
𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (1. 𝑒) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (1. 𝑓) 
 
where 𝜎 denotes the logistic sigmoid function, 𝑥𝑡 denotes the input vector at the current mo-

ment, ℎ𝑡  is the hidden state, 𝑊  is the weight matrix (e.g., 𝑊𝑖  denotes the input gate weight 
matrix) and 𝑏 is the bias vector (e.g., 𝑏𝑖 denotes the input gate bias vector). Figure 1 shows the 
structure of the LSTM cell. 
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Figure 1  Structure of the LSTM cell. 

2.1.2. Gated Recurrent Unit (GRU) Module 

GRU is a simplified variant of LSTM which has a similar capability of modelling time-dependent 
data but with lower computational complexity than LSTM. The information flow of the GRU network 
can be represented as follows: 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (2. 𝑎) 
𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (2. 𝑏) 

ℎ
~

𝑡 = tanh(𝑊ℎ ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (2. 𝑐) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ
~

𝑡 (2. 𝑑) 
 
where 𝜎 is the logistic sigmoid function, 𝑥𝑡 is the current input vector, ℎ𝑡 is the hidden layer, 

𝑊 is the weight matrix, and 𝑏 is the bias vector. Figure 2 shows the structure of the GRU unit. 

 
Figure 2  Structure of the GRU cell. 

2.1.3. Variational Autoencoder (VAE) Module 

VAE is an unsupervised learning model that learns to map input data to a latent space and recon-
structs it back to the original data. This process involves an encoder that transforms the input 𝒙 
into a latent variable 𝒛 , and a decoder that reconstructs  𝒙‘ from 𝒛: 

 𝒛 ~ 𝐸𝑛𝑐(𝒙) = 𝑞(𝒛|𝒙), 𝒙′ ~ 𝐷𝑒𝑐(𝒙) = 𝑝(𝒙|𝒛) (3) 

The VAE minimizes the following loss function, which combines reconstruction error and Kullback-
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Leibler divergence (KL divergence):  

 𝓛𝑉𝐴𝐸 = −𝔼𝑞(𝒛|𝒙)[log𝑝(𝒙|𝒛)]+𝐷𝐾𝐿(𝑞(𝒛|𝒙)||𝑝(𝒛)) = 𝓛𝑙𝑙𝑖𝑘𝑒 + 𝓛𝑝𝑟𝑖𝑜𝑟 (4) 

Where the first term represents the reconstruction error and the second term ensures the latent 
space 𝒛 follows a prior distribution 𝑝(𝒛), typically Gaussian. 𝐷𝐾𝐿 denotes the Kullback-Leibler di-
vergence. 

2.1.4. Generative Adversarial Network (GAN) Module 

GAN consists of a generator G and a discriminator D. The generator learns the distribution of the 
data by confronting the two models with each other. In the course of adversarial iterative training, 
a noisy 𝒛 is generated from the distribution 𝑝𝑧(𝑧) and supplied to the generator, yielding the out-
put 𝑥′, where the generator's objective is to align the distribution of the generated data 𝑝𝑔(𝑥), 

with that of the real data, 𝑝𝑑𝑎𝑡𝑎(𝑥). Simultaneously, the discriminator processes input data from 
both the generator and real sources, yielding an output representing the probability of real data. 
The discriminator aims to adeptly distinguish between data generated by the true generator and 
actual data. Within the optimization framework of a Two-player Game, both networks continually 
refine their predictive capabilities, striving for equilibrium. The goal of GAN is to maximise/minimise 
the competitive training process： 

𝓛𝐺𝐴𝑁 = min
𝐺

max
𝐷

𝔼𝒛~𝑞(𝒛|𝒙)[log𝐷(𝒛)]+𝔼𝒛~𝑞(𝒛)[log(1 − 𝐷(𝐺(𝒛)))] (5) 

2.2. Classical Anomaly Detection Algorithms 

 In this subsection, we briefly explain the procedures of unsupervised anomaly detection. 

2.2.1. LSTM based anomaly detection algorithm 

The algorithm for detecting anomalies based on LSTM is trained on normal time series that is free 
of anomaly (or with only a negligible portion of anomalous samples). It focuses on detecting anom-
alies by comparing residuals between predicted and actual values against dynamically set upper and 
lower thresholds, denoted as ε𝑢𝑝 and ε𝑙𝑜𝑤, respectively. Instances exceeding these thresholds are 

identified as anomalous. Our approach employs a layer of LSTM for anomaly detection. The process 
for detecting anomalies in the 𝑛th moment 𝑋𝑛 is as follows: the network is fed with the infor-
mation of its history of 𝑛 − 1 moments, and after passing the last LSTM unit state through the fully 
connected layer, the predicted information 𝑋𝑛

′ for the 𝑛th moment is obtained. The subsequent 
step involves evaluating the residual between the predicted and actual values at the current mo-
ment. After accumulating residuals over a defined period, we use historical residual values along 
with the N-sigma law to establish the current residual range. This methodical approach enables us 
to effectively detect anomalies within the time series data. The threshold calculation formula is out-
lined as follows. 

𝜀𝑢𝑝 = 𝑢 + 𝑛𝑢𝑝𝜎 , 𝜀𝑙𝑜𝑤 = 𝑢 + 𝑛𝑙𝑜𝑤𝜎 (6) 

where 𝑢 denotes the mean of the historical residuals and 𝜎 denotes the variance of the histor-
ical residuals. Figure 3 shows the LSTM-based anomaly detection. 
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Figure 3  The overall architecture of the LSTM-based anomaly detection network. 

2.2.2. LSTM-AE based anomaly detection algorithm 

The LSTM-based anomaly detection model for AE learns state transitions between normal se-
quences and potential space via encoder and decoder. Since the network doesn't understand the 
potential space representation corresponding to anomalous sequences, the reconstruction error 
becomes significantly large when processing an anomalous sequence. In our approach, both the 
encoder and decoder are structured with a single layer of LSTM. The specific flow of performing 
anomaly detection is as follows: for the 𝑛th moment of information 𝑋𝑛 to be detected, with the 
history of 𝑛 − 1 moments forming the input 𝐗 = {𝑋1, 𝑋2, … , 𝑋𝑛}, after passing through the net-
work we obtain the reconstructed sequence 𝐗′ = {𝑋1

′, 𝑋2
′, … , 𝑋𝑛

′}, and thus the reconstruction 
error 𝛄 = {γ1, γ2, … , γ𝑛} between the original sequence and the reconstructed sequence. The his-
tory of 𝑛 − 1  residuals {γ1, γ2, … , γ𝑛−1}  is also counted using the N-sigma law. The dynamic 
threshold for the current moment is thus determined and the threshold calculation is shown in 
Equation 6. If the current residual γ𝑛 exceeds the threshold, it is identified as an anomaly. Figure 4 
depicts the structure of the anomaly detection network based on LSTM-AE. 

 
Figure 4  Structure of the LSTM-AE anomaly detection model. 

3. PROPOSED METHOD 

In this section, we explain our proposed anomaly detection algorithm based on the GAN-VAE 
model. 

3.1. GAN-VAE Model 
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The GAN-VAE model is constructed by combining GAN and VAE networks. The whole network 
consists of three components: encoder, decoder and discriminator, where the decoder also acts as 
the generator of the GAN network. The adversarial training between the generator and the discrim-
inator of the GAN network allows the generator to capture the probability distribution of normal 
data from a potentially noisy distribution. Given this, the primary framework of the anomaly detec-
tion network remains the VAE. The discriminator in the GAN contributes by assisting the decoder in 
the VAE network (acting as the generator in the GAN network) to enhance the reconstruction of raw 
data. The encoder, decoder and discriminator of the proposed GAN-VAE network use the GRU struc-
ture, taking advantage of the time series modelling of the GRU unit. 

Figure 5 illustrates the network structure of GAN-VAE. In our GAN-VAE anomaly detection process, 
only the encoder and decoder of the model are needed, and the role of the discriminator is mainly 
to help the decoder to better reconstruct the time series. It should be noted that the state of the 
first GRU unit of the decoder is randomly initialized within the network, and the state of the subse-
quent GRU units is passed on by the GRU unit of the previous moment, so the decoder reconstructs 
the first few time steps, the state of the GRU unit might not have been fully activated. At this time, 
the decoded information of these time steps will be rounded off. Consequently, the encoder accepts 
𝑛 time steps of information and the decoder decodes 𝑚 time steps of information (𝑚 > 𝑛), and 
the decoder focuses only on the latter 𝑛 time steps of information during the subsequent training 
and anomaly detection process. 

 
Figure 5  Structure of the GAN-VAE. 

3.2. Training process 

To accelerate the training of the GAN-VAE model, each module adopts a distributed training 
method. In addition, we incorporate Wasserstein GAN (WGAN) (Arjovsky et al., 2017) to improve 
the learning stability of the GAN network and reduce pattern crash problems. We then provide a 
detailed description of the inputs, outputs, and loss functions for each module in the distributed 
training process of the GAN-VAE network. For the encoder part, the input comprises only the real-
time series 𝑿 from 𝑝𝑑𝑎𝑡𝑎(𝑥), and the output is the compressed latent vector 𝒛 (where 𝒛 con-
forms to a normal distribution). The loss function includes both the 𝐷𝐾𝐿 and the reconstruction 
error. 

 𝓛𝑒𝑛𝑐 = 𝓛𝑙𝑙𝑖𝑘𝑒 + 𝓛𝑝𝑟𝑖𝑜𝑟 (7) 

For the decoder part, the input is the potential vector 𝒛 compressed by the encoder and the 
random noise 𝒛𝒑 from 𝑝𝑧(𝑧). The output includes the reconstructed sequence 𝑿′ of the real se-

quence 𝑿 and the data 𝑿𝒑 generated by the random noise 𝒛𝒑. Its loss function includes both the 

reconstruction error and the cross-entropy loss of the discriminator. 
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 𝓛𝑑𝑒𝑐 = 𝓛𝑙𝑙𝑖𝑘𝑒 + 𝓛𝐺𝐴𝑁 (8) 
For the discriminator part, the inputs are the real data 𝑿 from 𝑝𝑑𝑎𝑡𝑎(𝑥), the reconstructed data 

𝑿′ according to VAE, and the data 𝑿𝒑 generated by the random noise 𝒛𝒑. The outputs aim to 

discriminate as accurately as possible between the real data 𝑿  and the generated sequences 
𝑿′and 𝑿𝒑. Its loss function only includes the cross-entropy loss of the discriminator. Throughout 

the training process, in each batch within each epoch, we train first the encoder, then the decoder, 
and lastly the discriminator. Alg. 1 gives an overview of the training process. 

Algorithm 1: Training GAN-VAE model 

initialize network parameters: 𝜽𝑬𝒏𝒄, 𝜽𝑫𝒆𝒄, 𝜽𝑫𝒊𝒔 
repeat until deadline: 

1： 𝐗⟵ random mini-batch from training dataset 

  

 // update Encoder model 

2：   𝐙 ⟵ Enc(𝐗) 

3：   ℒ𝒑𝒓𝒊𝒐𝒓 ⟵𝐷𝐾𝐿(𝑞(𝐙|𝐗)||𝑝(𝐙)) 

4：   𝐗′ ⟵Dec(𝐙) 

5：   ℒ𝒍𝒍𝒊𝒌𝒆 ⟵−𝔼𝑞(𝐙|𝐗)[log 𝑝(𝐗|𝐙)] 

6：   𝜽𝑬𝒏𝒄
+
←−∇𝜽𝑬𝒏𝒄(ℒ𝒑𝒓𝒊𝒐𝒓 + ℒ𝒍𝒍𝒊𝒌𝒆) 

  

   // update Decoder model 

7：   𝐙 ⟵ Enc(𝐗) 

8：   𝐗′ ⟵Dec(𝐙) 

9：              ℒ𝒍𝒍𝒊𝒌𝒆 ⟵−𝔼𝑞(𝐙|𝐗)[log 𝑝(𝐗|𝐙)] 

10
： 

  𝐙𝒑 ⟵ samples from prior 𝒩(𝟎, 𝑰) 

11
： 

  𝐗𝒑 ⟵Dec(𝐙𝒑) 

12
：   𝜽𝑫𝒆𝒄

+
←−∇𝜽𝑫𝒆𝒄(ℒ𝒍𝒍𝒊𝒌𝒆 + log𝐷𝑖𝑠(𝐗′) + log𝐷𝑖𝑠(𝐗𝒑)) 

  
   // update Discriminator model 
13
：      

  𝐙 ⟵ Enc(𝐗) 

14
： 

  𝐗′ ⟵Dec(𝐙) 

15
： 

  𝐙𝒑 ⟵ samples from prior 𝒩(𝟎, 𝑰) 

16
： 

  𝐗𝒑 ⟵Dec(𝐙𝒑) 

17
：   𝜽𝑫𝒊𝒔

+
←−∇𝜽𝑫𝒊𝒔(log𝐷𝑖𝑠(𝐗) + log(1 − 𝐷𝑖𝑠(𝐗′)) + log (1 − 𝐷𝑖𝑠(𝐗𝒑))) 
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3.3. GAN-VAE based anomaly detection 

The GAN-VAE based anomaly detection algorithm involves three processes: data processing, slid-
ing window partitioning, and execution detection. The purpose of data processing is to fill in any 
missing values in the data. Sliding window division processes the time series into fixed-length sub-
sequences, which are then used for subsequent anomaly detection and simulate a real-time detec-
tion process. Finally, the execution detection process performs anomaly detection on these divided 
subsequences. 

In the anomaly detection process utilizing our GAN-VAE model, the core components involved 
are the encoder and the decoder. The detection methodology unfolds as follows: given the sequence 
data of 𝑛 th timestamp to be analyzed, denoted as 𝑋𝑛, with the historical data from 𝑛 − 1 
timestamps forming the input 𝐗 = {𝑋1, 𝑋2, … , 𝑋𝑛}. The encoder processes this input to derive a 
latent representation 𝒛  of the real data's potential space. The decoder then reconstructs the se-
quence, yielding 𝐗′ = {𝑋1

′, 𝑋2
′, … , 𝑋𝑛

′}. The reconstruction error, denoted by 𝛄 = {γ1, γ2, … , γ𝑛}, 
is calculated by comparing the original sequence 𝐗 with the reconstructed sequence 𝐗′. 

Aligning with the adaptive threshold mechanism utilized in LSTM-AE, our approach involves ap-
plying the N-sigma rule to ascertain the historical residuals {γ1, γ2, … , γ𝑛−1}. This facilitates the de-
termination of dynamic thresholds, 𝜀𝑢𝑝 and 𝜀𝑙𝑜𝑤 , for the current timestamp, as elaborated in 

Equation 6. An anomaly is identified at the point of detection when the residual γ𝑛 exceeds these 
established thresholds, 𝜀𝑢𝑝 and 𝜀𝑙𝑜𝑤. 

4. Numerical Results 

4.1. Parameter setting 

In this section, we evaluate the performance of the proposed GAN-VAE model for anomaly de-
tection. The evaluation includes a comparison with the baseline algorithms described in Section II, 
including LSTM, LSTM-AE, and ARIMA. Table 1 details the hyperparameters of the models, along 
with the parameters used in model training. The batch size was fixed at 32. The models were con-
structed using pytorch-1.10 and python-3.7 platforms. Normalization of data was conducted prior 
to training the models, and a similar normalization process was applied when performing anomaly 
detection. 

Table 1  The hyper parameters of the models considered as well as the parameters for training 
the models. 

Parameters LSTM 
LSTM_AE GAN-VAE 

Encoder Decoder Encoder Decoder Discriminator 

Depth 1 1 1 2 2 2 

Input Length 96 96 96 

Dimension of Z none 20 20 

Hidden  
neural 

12 20 20 20,40 40,20 12,6 

Learning rate 0.0003 0.0003 0.0003 0.0003 0.0003 0.003 

Optimizer Adam Adam Adam RMSProp RMSProp RMSProp 



 

 

10 

 

DATA SCIENCE AND INFORMETRICS DSI 

When performing anomaly detection, a longer period needs to be reconstructed in order to cap-
ture anomalous change points. However, the conventional input method of GRU, which takes se-
quential data as a long input vector, may not able to capture the periodic changes in the time series. 
Inspired by the stacking input method introduced in (Gong et al., 2022), where data points of the 
same day are aggregated into a vector and fed into a time step of the GRU network, we modify the 
GRU time step to represent a day rather than the original time granularity of the sequence. This 
stacking input is applied to both the GAN-VAE model and the baseline models. 

An important aspect highlighted in Section 3.1 is that the initial state of the decoder in our GAN-
VAE model is internally initialized randomly by the network. The encoder processes 𝑛 steps of in-
formation, while the decoder decodes 𝑚 time steps of information. According to Table 1, the mod-
el's input is 96, achieved by stacking the data points of the same day into one vector. So 𝑛 is set to 
4 steps and we set 𝑚 to 8 steps. In our experiments, the dynamic thresholds are all determined 
using the N-sigma law, and the threshold parameters for each method are shown in Table 2. 

Table 2  The threshold parameter for the model to perform anomaly detection 

Parameters LSTM ARIMA LSTM-AE GAN-VAE 

n𝑢𝑝 3.1 4.2 3.5 3.5 

n𝑙𝑜𝑤 3.1 4 3 3 

4.2. Data Set Description 

In our experiments, we evaluate the anomaly detection performance using two datasets: Base 
Station (BS) load data and Yahoo data (Laptev & Amizadeh, 2015). Anomalous samples in the dataset 
are labelled as positive, while normal samples are labelled as negative. 

The BS load data is collected by a cellular service provider in response to the total number of BS 
Radio Resource Control (RRC) connection attempts for BS load Counters. This dataset comprises 
time series data of individual counters, spanning from 15 January 2018 to 8 July 2018, gathered from 
over 2,700 locations. With only 0.071% missing points in the raw data, we utilized linear interpola-
tion to fill in the gaps. Preliminary data analyses reveal that the base station data exhibits a 24-hour 
or 1-week cycle, likely influenced by human activity, as shown in Figure 6. It is worth noting that the 
characteristics of weekdays and weekends are different in this type of data. Therefore, we need to 
process them separately and use them together as training data for the model. 
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Figure 6  Time series used in our experiment, and the red parts are anomalies. (a)(b) Time series 

in BS load dataset. (c)(d) Time series in Yahoo dataset. 
 
The Yahoo dataset, released by Yahoo Labs, encompasses both real and synthetic time series. The 

synthetic dataset contains time series with random seasonality, trend and noise. Within this set, 
A1Benchmark represents the real data, while the other three segments constitute synthetic data. 
A1 Benchmark comprises 94,866 points and 1,669 anomalies, resulting in an anomaly rate of 1.76%. 
We use A1 Benchmark to evaluate the performance of the anomaly detection model, as shown in 
Figure 6.  

The datasets used in the experiments include base station load data and the Yahoo dataset, which 
cover a wide range of data types. Both datasets contain periodic and non-periodic data, as well as 
three different types of anomalies: outlier anomalies, contextual anomalies, and collective anoma-
lies. Therefore, the data used in the experiments are representative of large-scale time series data, 
ensuring the broad generalizability of our proposed algorithm. 

In the data processing phase, we first use linear interpolation to fill in the missing values in the 
data. Next, a sliding window is applied to divide the data into samples of a smaller length. Finally, 
each item of data is normalized to the range [0,1] using the min-max normalization method. Specif-
ically, for the BS load data, we randomly selected 300 locations as the training set, and the rest of 
the data were similarly randomly screened from 300 locations as the test set. Regarding the Yahoo 
data, given its smaller size, we split the time series into two parts, designating one as the training 
set and the other for testing. The training data from both datasets are collectively utilized to train 
the GAN-VAE network. It's worth noting that anomalies are excluded from the training data, as our 
model aims to learn the distribution of normal data. 

4.3. Experimental Results 

Given the low proportion of anomalies in the data, relying solely on precision is insufficient to 
evaluate anomaly detection performance. Therefore, recall and F-score are adopted as additional 
metrics to assess system performance (Chicco & Jurman, 2020). These metrics are defined as follows: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(9) 

where 𝑇𝑃 represents the number of correctly detected anomalies, 𝐹𝑃 represents the number 
of normal points incorrectly identified as anomalies, and 𝐹𝑁 represents the number of anomalies 
incorrectly identified as normal points. 

Table 3 shows the performance of our GRU-based GAN-VAE network compared to the baseline 
anomaly detection method described in Section II. The results demonstrate that the proposed GAN-
VAE method outperforms other approaches on both the base station load and Yahoo datasets. 

Table 3  Precision, recall and F1 scores of three different classes of time series anomaly detection 
methods and our GRU-based GAN-VAE method. 

Dataset Method Precision Recall F-score 

BS load 

LSTM 0.778 0.838 0.807 

ARIMA 0.786 0.647 0.710 

LSTM-AE 0.495 0.177 0.261 

GAN-VAE 0.861 0.902 0.881 

Yahoo 

LSTM 0.889 0.848 0.868 

ARIMA 0.897 0.873 0.885 

LSTM-AE 0.662 0.538 0.594 

GAN-VAE 0.900 0.877 0.888 

4.4. Visual Analysis 

The proposed GAN-VAE network is designed to enable the generator to capture the distribution 
of normal data through mutual confrontation between the GAN's discriminator and the GAN's gen-
erator (the decoder of the VAE). This collaborative training enhances the generator's proficiency in 
reconstructing data with precision. Furthermore, the network learns the distribution of the data on 
the normal data set. This ensures that after training, when performing anomaly detection, the re-
construction error is small for normal data and large for anomalous data. In order to observe this 
intuitively, we show the input sequence and the reconstructed sequence when we perform anomaly 
detection in Figure 7. 
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Figure 7 Visualization plots of anomaly detection in the experiment, with the bottom subplot of 

each plot showing the anomaly detection results. (a)(b) Time series in the BS load dataset. (c)(d) 
Time series in the Yahoo dataset. 

Figure 7 illustrates a schematic representation of the detection process employed by our pro-
posed methodology. In each figure, the upper plot visualizes the original time series as depicted by 
a blue line, contrasted with the reconstructed sequence shown by a red line. The intermediate plot 
highlights the discrepancies between the original and reconstructed series, represented by a blue 
line, while the dynamically computed anomaly detection thresholds, ε𝑢𝑝 and 𝜀𝑙𝑜𝑤, are indicated 

by a red line. Anomalies are identified in instances where the discrepancies surpass these thresholds. 
The lower plot delineates the results of the anomaly detection process. The performance of our 
model is notably better in identifying anomalies within large-scale time series data, as evidenced by 
the schematic. 

As shown in Figure 7(a), the data around June 22 demonstrates that the GAN-VAE model can fit 
the data at the point of interest by combining it with the historical data state. It then identifies a 
downward collective anomaly based on the reconstruction error between the reconstructed data 
and the original sequence. Meanwhile, prior to June 11, the sequence data was in a higher-value 
state on weekdays. However, on June 11, the data suddenly decreased on weekdays, and the GAN-
VAE algorithm detected this anomalous state based on the weekday state of the historical data. The 
detection principles for Figures 7(b) and 7(c) are similar. In Figure 7(d), the initial data values are 
very low, and then two jumps occur. The algorithm detects these two jumps sequentially based on 
the historical state of the sequence. 

5. CONCLUSIONS 

Anomaly detection can promptly identify abnormal behavior in a system to prevent potential fail-
ures or security breaches. For instance, in the financial sector, anomaly detection can identify unu-
sual transactions and prevent fraudulent activities. In the manufacturing industry, it can monitor the 
operating status of equipment and detect failures early, thereby reducing production line downtime 
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and maintenance costs. In medicine and healthcare, anomaly detection can monitor patients' phys-
iological parameters, detecting abnormalities early to ensure patient health and safety. 

This study introduced a sophisticated model for detecting anomalies in large-scale time series, 
utilizing a GRU-based GAN-VAE framework. The model detects anomalies by examining reconstruc-
tion errors of time-series against dynamically adjusted thresholds. It incorporates a GAN to better 
represent the distributions of normal data and employs distributed and improved WGAN training 
techniques to enhance efficiency and prevent pattern collapse. The approach of stacking multiple 
time sequences reduces network time steps, fostering superior sequence pattern learning. Compar-
ative evaluations with benchmark models on diverse datasets validate the superior anomaly detec-
tion capabilities of the proposed method. 

Our proposed anomaly detection algorithm for GAN-VAE can achieve high accuracy without rely-
ing on data labeling. However, the algorithm has certain limitations that require further research 
and improvement. Specifically, the GRU unit used in the anomaly detection algorithm is only appli-
cable to data sampled at fixed time intervals, which makes the algorithm unsuitable for data sampled 
at random time intervals. 
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