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ABSTRACT

Feature selection plays a crucial role in electroencephalography (EEG)-based emotion
recognition. Currently, there is limited research connecting feature selection with specific brain
regions in EEG emotion recognition, and the application of transfer learning in feature selection
is also scarce. This paper proposes a novel manifold sorting feature selection (MSFS) method,
and its corresponding multi-source classification framework. MSFS selects channel features
most similar to the T7 and T8 channels, which are highly related to each emotion category,
using effective manifold-based similarity ranking. The selected features are combined and used
for prediction and classification. Experimental results demonstrate that the average
classification accuracy of the MSFS method combined with SVM on the SEED, and SEED-IV is
77.63%, and 53.65%, which are 1.26%, and 2.90% higher than the SVM without MSFS.
Furthermore, MSFS is compared with other feature selection methods, and the results show
that MSFS achieves the best performance when used in conjunction with transfer learning for
classification.
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1 Introduction

Emotion recognition technology based on electroencephalography (EEG) signal analysis has
become crucial in artificial intelligence. It exhibits significant potential in emotional health care,
human-computer interaction, and multimedia content recommendation (X Li et al., 2022).
Research has shown that patients' emotions have a significant impact on rehabilitation. Positive
emotions are beneficial for physical and mental health, enhance happiness, and promote the
recovery of bodily functions; while negative emotions can easily lead to problems such as
depression, anxiety, and insomnia, and long-term maintenance of this state may hinder recovery
(Huang et al., 2019). Interactivity is an important feature of virtual reality, where emotions
influence human interaction behavior and can reflect several emotional states (Dalgarno & Lee,

*Corresponding author: qsshe@hdu.edu.cn

mailto:qsshe@hdu.edu.cn


DATA SCIENCE AND INFORMETRICSDSI

2010). Therefore, emotion recognition can enable interaction systems to analyze the deep
meaning of behavior further, and the system can provide feedback control based on the
recognized human emotional state, targeted to meet user needs, and promote the intelligent
development of human-computer interaction (Makantasis et al.,2023). Derdiyok & Akbulut (2023)
proposed a novel video abstract based on physiological signals provided by emotional stimuli in
social media. Reading such abstracts can help you understand the importance of quickly judging
likes, ratings, comments, and more.

Human physiological signals often change with changes in emotions. Physiological signals can
reflect more authentic emotional states than other emotion recognition modes. Other emotion
recognition modes, such as facial expressions, often have inaccurate representations and are easily
disguised, so physiological signals are important input signals for emotion recognition (Lin & Li,
2023). Moontaha et al. (2023) developed a real-time emotion classification pipeline using
non-invasive portable EEG sensors based on directly measuring electrical correlation from the
brain, achieving real-time prediction in real-time scenes with delayed labels while constantly
updating. Tao et al. (2023) proposed an attention-based convolutional recurrent neural network
(ACRNN) by obtaining useful information on EEG channels and time, which extracts more
discriminative features from EEG signals and improves emotion recognition accuracy. Cheng et al.
(2022) proposed a hybrid EEG modeling method to simulate human dynamic emotional behavior
by considering brain electrodes' positional connectivity and contextual dependence. The method
introduced an attention mechanism to combine the multi-domain spatial transformer module and
the dynamic temporal transformer module, improving the classification performance of emotion
recognition. Although EEG-based emotion recognition has the above advantages, some things
could still be improved. Ahmed et al. (2023) proposed the InvBase algorithm in EEG signal
preprocessing, which improves recognition performance by removing baseline power before
extracting features that remain unchanged regardless of the topic. Zhong et al. (2023) proposed a
new emotion recognition framework based on EEG to address the problem of non-linear and
non-stationary EEG signals making it difficult to analyze and extract effective emotional
information from these signals. This framework achieved excellent performance using the tunable
Q-factor wavelet transform feature extraction method, a new spatiotemporal representation of
multi-channel EEG signals, and a hybrid convolutional recurrent neural network. EEG-based
emotion recognition needs to be fixed. The volume conduction effect of the human head
introduces inter-channel dependence and leads to a high correlation of information between most
EEG features. These highly correlated EEG features cannot provide additional useful information,
and they reduce emotion recognition performance. Xu et al. (2023) proposed the global
redundancy minimization in orthogonal regression method in orthogonal regression to effectively
evaluate the correlation between all EEG features. The work of this article also provides a method
to solve this problem.

Emotion recognition based on EEG includes several modules, such as obtaining EEG data, data
preprocessing, feature extraction and selection, and classification (Shu et al., 2018). Feature
extraction and selection have always been important research directions in emotion recognition.
Existing methods can be divided into two categories: manually designed and deep learning-based.
In manually scheduled feature extraction and selection, Chen et al. (2021) considered an EEG to be
an unstable and rapidly changing voltage signal. Therefore, they proposed an emotion recognition
feature extraction method based on EEG microstates. The method addresses the problem of
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significant feature variations in the extracted EEG features due to gradual changes in emotional
states. By utilizing microstate analysis, the method captures the important spatiotemporal
characteristics of EEG signals and extracts microstate features as novel spatiotemporal features,
thereby improving the emotion recognition performance of EEG signals. She et al. (2023a)
proposed a multi-source transfer learning framework that maintains the domain invariance of EEG
features and reduces data drift by embedding all samples into a brand-new feature space. Yin et al.
(2020) proposed a novel locally robust feature selection (LRFS) method to identify common EEG
features among multiple subjects. In the LRFS framework, the extracted EEG features are first
modeled using probability density estimation. The inter-individual consistency of the EEG features
is described by evaluating the similarity of all density functions between each pair of subjects. The
obtained consistency determines the locally robust EEG features. The LRFS feature selection
method performs well on publicly available datasets, but the features identified by LRFS are not
adapted to specific domain data.

Feature extraction and selection methods based on deep learning rely on automatic learning
using deep neural networks, such as convolutional neural networks, recurrent neural networks,
and autoencoders (Zhang et al., 2022; Zhang et al., 2019; Yin et al., 2017). In addition, Lv et al.
(2022) combined frequency-domain features, spatial information, and frequency band features of
multi-channel EEG signals to generate a novel emotion recognition network with multi-band EEG
topography. She et al. (2023b) proposed a new emotion recognition method based on a
multisource associate domain adaptation network, considering domain-invariant and
domain-specific features. The domain-specific features were extracted using the one-to-one
associate domain adaptation. Song et al. (2020) proposed a method of modeling multi-channel
EEG features using graphs, considering the inherent relationship between EEG channels in the
emotion recognition process, which improved classification accuracy. Şengür & Siuly (2020)
proposed an efficient emotion recognition framework based on deep learning. In this framework,
signals are preprocessed with low-pass filtering to remove noise, and the Delta frequency is
extracted and transformed into EEG rhythm images through continuous wavelet transform. Then,
pre-trained convolutional neural network models are used to discover in-depth features, followed
by selecting deep features using MobileNetv2. Finally, the selected features are classified using the
long short-term memory method, achieving good performance. Deep learning models have strong
feature learning capabilities and can extract complex high-level features. However, these methods
often require much-labeled data and computational resources to train the model. In summary, the
human-designed method relies on domain experts' experience and knowledge, and often requires
extensive experimental validation, while the deep learning-based method can adaptively learn the
expression in the data without much human intervention but requires a large amount of data to
train the model.

This paper proposes the manifold sorting feature selection (MSFS) algorithm to address the
problem of selecting emotion features suitable for specific domains. There are two key
technologies in MSFS:

1) MSFS selects other channel features that are most correlated with the EEG emotion channels
discovered in existing studies through manifold sorting.

2) MSFS processes the labeled target data based on the selected features from each source
domain to obtain its classification accuracy on different source domains. Then, it uses accuracy as
a criterion to determine the similarity between the target domain and other source domains,
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while assigning weights to each source domain, enabling it to adapt to multi-source classification
scenarios.

The rest of this paper is organized as follows. Section 2 describes the details of the used
datasets and proposed algorithm. In Section 3, the experiments verify the performance of our
method compared with several state-of-the-art approaches. The discussions are given in Section 4.
Finally, the conclusion is given in Section 5.

2. Material and methods

2.1 Dataset description

To verify the effectiveness of the proposed model, three public datasets are used for
experiments, including SEED, SEED-IV and DEAP. The details are given as follows.

(1) SEED (Duan et al., 2013; Zheng & Lu, 2015): Fifteen Chinese film clips, consisting of 5 positive
emotions, 5 neutral emotions, and 5 negative emotions, were utilized as stimuli to elicit
corresponding emotional responses from the participants. A total of 15 subjects (7 males and 8
females) with an average age of (23.27 ± 2.37) years were recruited for the experiment, and each
subject completed three trials. During the presentation of the film clips, the subjects' EEG signals
were recorded using a 62-channel EEG electrode cap based on the international 10-20 system. The
electrode array amplifies the raw EEG signals and transmits them to the preprocessing module.
The EEG signals were sampled at a frequency of 1000 Hz. The experimental procedure is illustrated
in Figure 1. After viewing each film clip, the subjects completed a questionnaire to report their
emotional responses. Only the samples that effectively evoked the target emotion, as indicated by
the subjects' feedback, were considered valid for analysis.

(2) SEED-IV (Zheng et al., 2019): The dataset consisted of EEG and eye movement data from 15
participants, encompassing four emotions: happiness, sadness, neutrality, and fear. Each
participant completed three separate sessions on different days, with each session comprising 24
movie clips. The EEG signals were sampled at a frequency of 1000 Hz. Figure 2 illustrates the
experimental procedure.

(3) DEAP (Koelstra et al., 2011): In this study, 32 participants viewed 40 emotionally stimulating
videos, each lasting 60 seconds. The experiment recorded EEG signals from 32 channels and
peripheral physiological signals from eight channels. Following the video presentation, participants
provided ratings for their emotional states. Valence values above five were manually labeled
positive, while others were classified as negative. Figure 3 depicts a representative trial from the
DEAP dataset.

Figure 1 The experimental flow of SEED
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Figure 2 The experimental flow of SEED-IV

Figure 3 Time axis of a single trial in DEAP

2.2 Preprocessing

Only the data collected when the target emotion was elicited was utilized based on the
participants' stress response. Initially, the original EEG data was downsampled to 200 Hz.
Subsequently, blinking artifacts in the EEG data were manually eliminated using the recorded
electrooculogram as a reference. To minimize the impact of noise and other interference on the
EEG signals, a band-pass filter ranging from 0.3 Hz to 70 Hz was applied. Finally, the data was
segmented into one sample per second to facilitate analysis and interpretation.

The study validates the efficacy of differential entropy (DE) in comparison to differential
asymmetry, rational asymmetry, and energy spectrum (Duan et al., 2013). For a specific frequency
range within a fixed-length EEG signal, the DE feature (Shi et al.,2013) is approximately equivalent
to the logarithm of the power spectral density feature (Zheng & Lu, 2015). Additionally, under the
assumption that the random variable follows a Gaussian distribution � �, �2 , the feature can be
expressed as follows:

ℎ(�) =− −∞
+∞ 1

2��2
� ��� (�−�)2

2�2 ��� 1

2��2
��� (�−�)2

2�2 �� = 1
2

���2���2 (1)

In the calculation of DE, � represents the Euler constant, and � represents the standard
deviation of the time signal. DE is equivalent to the logarithm of a specific frequency band energy
spectrum when the time series follows a Gaussian distribution (Zheng et al., 2019). After
preprocessing, a 512-point short-time Fourier transform is applied to compute the DE features of
EEG signals in five frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz),
and gamma (31-50 Hz).

To ensure the stability of emotion analysis, it is necessary to reduce the rapid fluctuations in the
feature sequence. Studies have demonstrated the effectiveness of employing a linear dynamical
system for smoothing feature sequences (Duan, et al., 2013).

After the initial processing steps, the EEG signals from SEED and SEED-IV datasets, consisting of
62 channels, are further transformed to have a feature dimension of 62 × 5 = 310 per second.
The feature is then expanded to a final dimension of 1 × 310 to obtain the sample feature.
Similarly, for the DEAP dataset with 32 channels, the EEG feature dimension per second is
32(channels) × 5(bands) = 160 , and after expansion, the dimension becomes 1 × 160 for the
final sample feature.
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2.3 Manifold sorting feature selection method

The proposed MSFS is used to solve the problem of cross-subject prediction in EEG-based
emotion recognition. This framework selects the most suitable channel features which are used
for prediction and classification through the manifold sorting feature selection method to study
the emotion classification of specific brain regions in EEG emotion recognition. In the remainder of
this section, we describe the corresponding components of this framework in detail.

A. Classification framework
Figure 4 depicts the multi-source classification framework of MSFS for addressing the

cross-subject prediction problem in EEG-based emotion recognition. As shown in the figure, the
framework starts by performing MSFS channel selection on the source domain 1, obtaining the last
selected channel features and training the corresponding source domain classifier. The labeled
target domain data is then processed with the selected channels and fed into the source domain
classifier to obtain the voting weights of source domain 1. Next, the unlabeled target domain data
is processed with the selected channels and injected into the source domain 1 classifier to obtain
the predicted results for the target domain based on source domain 1. The same procedure is
applied to the remaining source domains to obtain the predicted results for the unlabeled data in
each source domain. Finally, a voting scheme is employed to aggregate the predictions from
different source domains and obtain the final prediction results for the unlabeled data.

Figure 4 Classification framework based on manifold sorting feature selection

B. Manifold sorting

In the manifold sorting method, the source domain samples are represented as � =

�1, �2, �3, …, �� ∈ ��×� , consisting of � samples in � dimensions, while the anchors which

share the same space with the source domain samples, are denoted as � = �1, �2, �3, …, �� ⊂

��×� .� represents the sorting function that maps �� to the corresponding ranking scores �� .

Define � = �1, �2, …, ��
� as the initial vector and �� = 0 in the context of feature selection.

Euclidean distance between �� and �� denoted as � ��, �� , and ��� = exp − �2 ��, �� /2�2 .

��� refers to the weight of the edge between samples � and � , � ∈ ��×� represents the

adjacency matrix, and ���denotes an element in the �. ��� = ��=1
� ���，� is a diagonal matrix.
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Therefore, the following objective function is derived.
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where � > 0 is the regularization parameter. The optimal � can be obtained through a
closed-form solution as shown below:

� = �� − �� −1� (3)

where � = 1
1+�, and �� is an � × � identity matrix.

� = �−1/2��1/2 (4)
where � is a diagonal matrix and each value is the sum of the values in the �-th row of �.

The effective manifold sorting method improves the calculation of � by introducing a weight
matrix � ∈ ��×� , which represents the underlying relationships between data points in � and
anchor points in �.
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where � is the Epanechnikov quadratic kernel,

�� � =
3
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where � � refers to the anchor point that has the �-th closest Euclidean distance to the ��.
When using the manifold sorting algorithm in MSFS, given an input sample ���� for querying,

firstly, the Euclidean distances between ���� and each anchor point in � are computed and
sorted, and then, ��� is calculated based on Eqs. 5-7. The weight matrix � has been calculated
before for the sample features. We add the ��� calculated for the new sample ���� to the
weight matrix Z to get a new weight matrix ���� . The term ��+1 = 1 is added, and finally, the
manifold sorting scores between the sample and the source domain samples are calculated
according to Eqs. 3, 4 and 8.

The EEG signal is collected through an EEG cap equipped with 62 electrodes that comply with
the international 10-20 system, as shown in Figure 5. In MSFS, we select T7, T8 as the query and
use the corresponding manifold sorting scores as the basis for feature selection. According to
reference (Zheng & Lu, 2015), T7 and T8 represent channels that can better reflect human
emotions.

Figure 5 International 10/20 system
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C. Workflow of MSFS
Figure 6 illustrates the workflow of MSFS in a specific source domain. Taking the electrode

channel features selected for emotion category 1 as an example, the manifold sorting is performed
on all samples in emotion category 1 using the T7, T8 channels as the reference. The top 8
electrode channels with the highest selection frequency are identified. Finally, the selected 8
electrode channels are analyzed for all samples in this category, and the electrode channel with
the highest frequency of selection is chosen as the representative channel for emotion category 1
in this domain.

Figure 6 Flowchart of the proposed MSFS

The detailed steps of the MSFS process in the above procedure are described as follows. The

source domain data �� is divided into different classes �1-��, the number of categories denoted

as �, and � represents the i-th source domain. Given � source domains, there are � ∈ 1, � .

The j-th class samples in the i-th source domain are represented as ��
�� . Any sample from the j-th

class is represented as ��
�� � , � ∈ 1, ��

� , where ��
� represents the number of samples in the

j-th class of the i-th source domain. In Figure 6, � refers to the number of samples in the first

class of the first source domain. Then, the individual channel features in ��
�� � are treated as a

single sample, and the entire set of channel features is considered as �.
In the first step, ��

�� � is transformed into a shape of the number of channels multiplied by

the dimensionality of individual channel features based on the characteristics of each channel.

In the second step, the features of each channel are treated as �1, . . . , ������� �� �ℎ����� , and
the corresponding weight matrix � and � are calculated according to Eqs. 2-8, where � anchor
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points, represented as �1, …, ��, are set and obtained through K-means clustering.
In the third step, the channel features of T7 and T8 are used individually as ���� for querying.

The corresponding Euclidean distances between ���� and the anchor points in � are calculated
and sorted. Then, based on Eqs. 5,6, � is computed and arranged after � to form a new weight
matrix ���� . ��+1 = 1 term is added, and the manifold sorting scores of T7 and T8 channel
features with respect to the remaining channel features are calculated according to Eqs. 3,4,8.

In the fourth step, each channel's top four most relevant channels are selected individually.
These selected channels are then combined to form a set of eight channels that have the most
significant influence on this class (selected channels can be duplicated), preparing for the final
voting to determine the channels with the greatest impact on this class. This step completes the
manifold sorting feature selection for a single sample. The same process is applied to the
remaining samples, and ultimately, the selected features for this domain as a source domain are
obtained.

Next, MSFS processes the target domain based on the selected features from the corresponding
source domain and performs classification. After making predictions for the target domain using
each source domain, the final classification result for target domain samples is determined by a
voting process.

Algorithm below shows the process of obtaining channel features selected for the i-th source
domain through MSFS in the target domain.

Algorithm 1 Manifold sorting features selection
Input:

Data from the i-th source domain ��
Initialization vector � = �1, �2, …, ��

�

Final selected channel � ∈ �(2+�)×1, �(1) = T7, �(2) = T8
for i = 1 tom do

for j = 1 to N do

� = � ��
�� �

� = ����� �
According to Eqs. (2-8), input � and � to obtain �
Calculate � based on Eqs. (5-7) for the characteristics of T7 and T8 channels

���� = �
� , � = � 1

According to Eqs. (3), (4) and (8) to obtain �
Count the first 4 channels during T7 query and store them in �
Count the first 4 channels during T8 query and store them in �

end for
�(2 + �) = The channel with the highest number of occurrences in �

end for
Output:

Final selected channel �

2.4 Algorithms for comparison

This article observes the classification performance of using MSFS on some algorithms. In the
paper, this article applies a leave-one-out strategy for cross-subject experimental evaluation: one
subject is selected as the target domain sequentially, and the remaining subjects are attributed to
the source domain. This article took the average accuracy of all subjects as the final classification
result. The algorithms used include support vector machine (SVM), transfer component analysis
(TCA) (Pan et al., 2010), balanced distribution adaptation (BDA) (Wang et al.,2017), correlation
aligning (CORAL) (Sun et al., 2016) and joint distribution adaptation (JDA) (Long et al.,2013).
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Parameter settings contributing to the highest mean classification accuracy are shown in Table 1.
In addition, this article also compares MSFS with other feature selection methods, including
F-value feature selection, feature selection based on credibility and consistency of hierarchical
relationship (FSCCHI) feature selection, and minimum redundancy maximum relevance (MRMR)
feature selection.

Table 1 Parameters setting of various methods

Methods Parameters setting

support vector machine (SVM) degree:3; gamma:0.3; cost:1; rbf

transfer component analysis (TCA) lambda:5.2; d:20; primal;

balanced distribution adaptation (BDA) lambda:0.2; d:20; primal;

joint distribution adaptation (JDA) lambda:5.0; d:20; primal;

correlation aligning (CORAL) —

3 Results

3.1 Classification performance

In the following, the effectiveness of MSFS in emotional EEG recognition cross-subject
environments was verified through experiments. Figures 7, 8 and 9 respectively show the impact
of MSFS and without MSFS on the average accuracy of all subjects under the five classification
algorithms on three datasets. Figures 10 and 11 describe the impact of the MSFS algorithm and
the other three feature selection algorithms on the average accuracy under SVM and TCA
respectively. It can be observed that most methods exhibited improved classification performance
when using MSFS for feature selection. However, BDA showed a decrease in classification accuracy
after applying the MSFS algorithm. Since the MSFS feature selection significantly reduced the
sample feature dimensions in the SEED-IV dataset from 310 to 6 dimensions, BDA could extract
more information from the discarded features by MSFS, leading to better classification
performance without using the MSFS method. Although the performance of MSFS in the BDA
method was not ideal in the SEED-IV dataset, it demonstrated promising results in most other
methods and significantly reduced the dimensionality of sample features. Figure 9 shows the
performance of MSFS on the DEAP dataset, where it can be observed that MSFS did not perform
satisfactorily on DEAP. After applying MSFS, the selected features exhibited poorer results than the
original features in certain methods. This phenomenon can be attributed to the fact that the MSFS
methods used T7 and T8 channels as the reference points for queries, which are known to be
highly correlated with emotions in the SEED dataset rather than being the optimal channels in the
DEAP dataset. Hence, the results in the DEAP dataset cannot effectively showcase the
performance of the MSFS algorithm.

The following experiments are conducted to compare MSFS with other feature selection
methods, aiming to demonstrate its good performance of MSFS and suitability for transfer learning
algorithms. Figure 10 and Figure 11 present the experimental results in the SEED dataset. Figure
10 shows the classification performance of various feature selection methods in SVM, investigating
the performance of MSFS in non-transfer learning methods. The figure shows that MSFS method
outperforms the F-Value, FSCCHI method, and MRMR method. Figure 11 displays the classification
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performance of different feature selection methods in TCA, examining the effect of MSFS in
transfer learning methods. Compared to other feature selection methods, MSFS consistently
achieves superior results.

Further comparison between Figure 10 and Figure 11 reveal that not all feature selection
methods, such as the FSCCHI and MRMR methods, are suitable for transfer learning. These
methods amplify the negative transfer effects, leading to inferior results. MSFS, by selecting
brainwave channel features, can mitigate the negative transfer effects to some extent and reduce
the impact of irrelevant or redundant feature transfer mappings on recognition performance.

To comprehensively evaluate the performance of the MSFS algorithm, additional metrics are
used for performance comparison in this section, and the results are presented in Table 2 and
Table 3. The F1 score is a metric commonly used in statistics to assess classification models'
accuracy, combining precision and recall. A higher F1 score indicates a stronger classification
model. Additionally, the Kappa value is an important indicator for measuring classification accuracy.
It can be used for consistency testing and also to assess classification accuracy. The lower the
Kappa value, the more imbalanced the confusion matrix. Under these metrics, the MSFS feature
selection method improves the ACC, F1-Score, and Kappa coefficients for most methods on the
SEED and SEED-IV datasets, indicating that the MSFS feature selection method performs well.
However, on the SEED-IV dataset, the performance of the BDA method decreases after applying
MSFS. This phenomenon may be related to the dataset and the method used. Firstly, the SEED-IV
dataset is a four-class dataset, where each feature contains more information compared with the
three-class features. Therefore, using the MSFS channel selection method results in the loss of
corresponding data, leading to decreased accuracy.

Table 2 Summary of classification metrics for various methods on the SEED dataset with and

without MSFS

Algorithms Without MSFS With MSFS

ACC F1-score Kappa ACC F1-score Kappa

SVM 0.7637 0.7601 0.6452 0.7763 0.7726 0.6637

CORAL 0.7464 0.7434 0.6194 0.7744 0.7710 0.6609

TCA 0.7734 0.7713 0.6597 0.7869 0.7825 0.6797

BDA 0.8264 0.8253 0.7393 0.8341 0.8326 0.7510

JDA 0.7737 0.7718 0.6601 0.7866 0.7823 0.6794

MSFS: manifold sorting feature selection; SVM: support vector machine; CORAL:correlation aligning; TCA: transfer

component analysis; BDA: balanced distribution adaptation; JDA: joint distribution adaptation; ACC: Accuracy

Table 3 Summary of classification metrics for various methods on the SEED-IV dataset with and

without MSFS

Algorithms WithoutMSFS With MSFS

ACC F1-score Kappa ACC F1-score Kappa

SVM 0.5075 0.4943 0.3355 0.5365 0.5218 0.3756

CORAL 0.5301 0.5200 0.3682 0.5658 0.5487 0.4141

TCA 0.5028 0.4890 0.3317 0.5314 0.5178 0.3703

BDA 0.5629 0.5447 0.4128 0.5325 0.5109 0.3706

JDA 0.4883 0.4760 0.3133 0.5315 0.5180 0.3704
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MSFS: manifold sorting feature selection; SVM: support vector machine; CORAL:correlation aligning; TCA: transfer

component analysis; BDA: balanced distribution adaptation; JDA: joint distribution adaptation; ACC: Accuracy

MSFS: manifold sorting feature selection; SVM: support vector machine; CORAL:correlation aligning; TCA:

transfer component analysis; BDA: balanced distribution adaptation; JDA: joint distribution adaptation

Figure 7 Performance comparison of different methods before and after applying MSFS in the SEED

dataset

MSFS: manifold sorting feature selection; SVM: support vector machine; CORAL:correlation aligning; TCA:

transfer component analysis; BDA: balanced distribution adaptation; JDA: joint distribution adaptation

Figure 8 Performance comparison of different methods before and after applying MSFS in the

SEED-IV dataset
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MSFS: manifold sorting feature selection; SVM: support vector machine; CORAL:correlation aligning; TCA:

transfer component analysis; BDA: balanced distribution adaptation; JDA: joint distribution adaptation

Figure 9 Performance comparison of different methods before and after applying MSFS in the DEAP

dataset

FSCCHI: feature selection based on credibility and consistency of hierarchical relationship; MRMR: minimum

redundancy maximum relevance; MSFS: manifold sorting feature selection

Figure 10 Classification performance of various feature selection methods in support vector machine

(SVM)
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FSCCHI: Feature Selection based on Credibility and Consistency of HIerarchical Relationship; MRMR: minimum

redundancy maximum relevance; MSFS: manifold sorting feature selection

Figure 11 Classification performance of various feature selection methods in transfer component

analysis (TCA)

3.2 Parameter sensitivity

This section conducted experiments on the optimal number of channels corresponding to a

category in the final set of features determined by MSFS. This experiment was conducted using the

SEED dataset and the classification accuracy is the average accuracy of each of the 15 subjects as

the target domain. The experimental results are shown in Figure 12, where 0 represents the result

when only T7 and T8 channels were used as feature selection, 1 represents using only one channel

for each category, 2 represents using two channels for each category, and so on. Figure 12 reveals

that the best performance is achieved when the number of channels is set to 1. Additionally, the

classification performance remains relatively stable as the number of channels corresponding to a

category increases. Therefore, MSFS selects only one channel for each category. Furthermore,

comparing the results of using only T7 and T8 channels as feature selection with the improved

performance achieved by incorporating MSFS-selected channels demonstrates the effectiveness of

MSFS from another perspective.
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Figure 12 Performance of identifying the optimal number of channels corresponding to a category

3.3 Brainwave channels associated with different emotions

In this section, the MSFS algorithm was further evaluated by statistically analyzing the EEG
channels selected for the emotions of happiness, neutrality, and sadness in the SEED dataset. The
results, showing the most and second-most frequently selected channels for each emotion
category, are presented in Figure 13. The purpose was to explore the channels most correlated
with each emotion category. In Figure 13, the red channels T7 and T8 represent the reference
channels for manifold sorting. The yellow channels FC2 and P8 are the most frequently selected
feature channels for the negative emotion of sadness. The green channels TP7 and PO7 are the
most frequently selected feature channels for neutral emotion. The blue channels FC4 and TP8 are
the most frequently selected feature channels for the positive emotion of happiness. By
comparing these results with the study by Zheng & Lu (2015), it can be observed that the brain
regions selected by MSFS for emotion-related EEG channels largely coincide with their findings,
providing additional evidence for the effectiveness of MSFS.

The red channels T7 and T8 represent the reference channels for manifold sorting; The yellow channels FC2 and P8

are the most frequently selected feature channels for the negative emotion of sadness; The green channels TP7

and PO7 are the most frequently selected feature channels for neutral emotion; The blue channels FC4 and TP8

are the most frequently selected feature channels for the positive emotion of happiness.

Figure 13 Schematic diagram of emotional channels
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4 Discussion

In this paper, we develop a new feature selection framework named manifold sorting feature
selection (MSFS), taking into account existing knowledge on the correlation between brain regions
and emotion recognition. The paper addresses the problem of selecting domain-specific sentiment
features by identifying channel features that are most correlated with other channels. At the same
time, MSFS selects channels and trains respective classifiers for multiple source domains, and
aggregates and predicts unlabeled target domains through voting to achieve multi-source
classification problems, which is of great significance for the application of emotional
brain-computer interfaces.

In general emotion recognition methods, they use the selection of time domain and frequency
domain features, correlation analysis and feature selection in the feature space, and this paper
based on the T7 and T8 channels found in the literature (Zheng & Lu, 2015) can better reflect
human emotions. The MSFS method is proposed to select other channel features that are most
relevant to the EEG emotional channel through manifold sorting. No matter what kind of
classification algorithm is applied, the channel features selected according to MSFS are always the
most relevant channel features for emotion recognition, which can always improve the accuracy of
the classification algorithm. At the same time, the MSFS method can select the most relevant
channels of positive, neutral and negative emotions, which can guide the brain-computer interface
and help promote the application of brain-computer interface technology in emotional computing
and human-computer interaction. Therefore, channel selection is also of paramount importance in
effective BCI.

The paper studies various forms of emotional feature selection, and uses MSFS to conduct
comparative experiments on five classification algorithms. The experimental results verify the
effectiveness of MSFS in emotional EEG recognition in a cross-subject environment. Experimental
results with MSFS showed that individual-specific emotions were associated with specific
electrode channels. MSFS exploits the similarity of corresponding electrode channel distributions
between new subjects and source domain subjects as a similarity comparison measure between
source and target domains. It provides a novel approach to assess the similarity between domains
in the context of EEG-based emotional scenes.

In addition, the MSFS method is compared with F-Value, FSCCHI and MRMR feature selection
methods. The results show that MSFS achieves good results in the case of non-transfer learning
algorithms and outperforms other methods in the context of transfer learning. This finding
provides further evidence that the MSFS algorithm can enhance the transfer classification
performance of EEG-based emotion recognition.

We found that in Table 3, when the SVM classification algorithm uses MSFS, the accuracy of the
SEED-IV dataset is 23.98% lower than that of the SEED dataset, which may be due to the fact that
the SEED dataset is a three-category sentiment classification dataset, while the SEED-IV dataset is
a four-category data set. Emotion classification can express the classification performance as the
ratio of accuracy to the classification probability of each category. SEED data set: 77.63%/33.33% =
2.33, SEED-IV data set: 53.65%/25% = 2.15. MSFS shows lower performance on the SEED-IV
dataset, which may be because each of the four-category dataset SEED-IV features contains more
information than the three-category features, while MSFS channel selection leads to more
information loss in data. At the same time, SEED has a large amount of data, while SEED-IV has a
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small amount of data. The results show that the number of categories leads to the difference in
accuracy.

Although our method achieves better performance than classification algorithms that do not
use channel selection, the method has some limitations. Since there is no clear literature
confirming the channels that reflect human emotions on the DEAP dataset, this paper does not
verify the superiority of MSFS on the DEAP dataset. EEG signal processing and emotion
classification models related to EEG emotion classification performance have attracted much
attention. Our MSFS belongs to the category of EEG signal processing, and we used classification
models of other algorithms for experiments, but did not propose a classification model suitable for
MSFS. Huang et al. (2023a) and Li et al. (2021) proposed an automatic neural network architecture
design method, while Huang et al. (2023b) propose to optimize the hyperparameters and
block-based architectures in convolutional neural networks (CNNs) by genetic algorithms (GA). In
future work, it is necessary for us to explore some automatic learning methods, such as neural
structure search and hyperparameters optimization, and propose neural networks suitable for
MSFS to improve the performance of emotion recognition.

5 Conclusion

This paper presents a MSFS method for emotion recognition, which utilizes existing knowledge
about the brain and performs effective manifold sorting queries using brain-electrode channels
most relevant to emotions as anchor points to obtain emotion-related EEG channel features. MSFS
is a feature selection method that requires a small number of labeled samples from the target
domain. It addresses the feature selection problem for new subjects in EEG-based emotion
recognition by leveraging existing knowledge. A multi-source domain classification framework
suitable for the MSFS feature selection method is proposed to further enhance its performance in
multi-source domain scenarios. Our experimental results demonstrate that, on the SEED and
SEED-IV datasets, the selected channel features by the proposed MSFS method are effective and
lead to better classification performance than most other methods. However, several challenges
remain for future work. Specifically, it is necessary to identify the most critical channels
responsible for emotions in the human brain. While using the T7 and T8 channels as anchor points
achieved good results in the SEED and SEED-IV scenarios, they are unsuitable for the DEAP dataset.
Therefore, it can be inferred that although important for emotions, the T7 and T8 channels lack
generalizability. Improving the selection of anchor channels in MSFS can address this issue.
Furthermore, the method proposed by D.H., Li et al. (2022) to fuse various features and generate
new composite features can also contribute to enhancing the overall performance of affective
computing.
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