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ABSTRACT

In the study of graph convolutional networks, the information aggregation of nodes is important
for downstream tasks. However, current graph convolutional networks do not differentiate the
importance of different neighboring nodes from the perspective of network topology when ag-
gregating messages from neighboring nodes. Therefore, based on network topology, this paper
proposes a weighted graph convolutional network based on network node degree and efficiency
(W-GCN) model for semi-supervised node classification. To distinguish the importance of nodes,
this paper uses the degree and the efficiency of nodes in the network to construct the impor-
tance matrix of nodes, rather than the adjacency matrix, which usually is a normalized symmetry
Laplacian matrix in graph convolutional network. So that weights of neighbor nodes can be as-
signed respectively in the process of graph convolution operation. The proposed method is ex-
amined through several real benchmark datasets (Cora, CiteSeer and PubMed) in the experimen-
tal part. And compared with the graph convolutional network method. The experimental results
show that the W-GCN model proposed in this paper is better than the graph convolutional net-
work model in prediction accuracy and achieves better results.
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1 Introduction

In recent years, convolutional neural network (CNN) has developed rapidly and attracted
extensive attention due to its powerful modeling ability (Zhou et al., 2017). Compared with
traditional methods, the arrival of CNN brings new solutions to image processing (Zhang et
al., 2019), natural language processing and other fields, such as machine translation (Hu et
al., 2015), image recognition (He et al., 2016) and speech recognition (Hinton et al., 2012).

Traditional CNNs have brought improvements in the field of text and image, but they can
only process Euclidean spatial data, including images, text, speech, etc., which have transla-
tion invariance (in matrix representation). For example, for image data, an image can be rep-
resented as a group of regularly distributed pixels in Euclidean space, while translation in-
variance means that local structures of the same size can be obtained with any pixel as the
center. In this case, CNN model local connections by learning the convolution kernel shared
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at each pixel, and then learn meaningful hidden layer representations for images.

How about CNNs for non-Euclidean spatial data, for example, graph data? Graph data can
naturally represent real-world data structures such as the World Wide Web, transportation
networks, and social networks. They are gaining attention because of their ubiquity. Different
from image and text data, the local structure of each node in graph data is different, which
makes translation invariance no longer satisfied (Shuman et al.,, 2013). The lack of translation
invariance makes it challenging to define CNN on graph data. However, due to the universal
existence of graph data, researchers began to focus on how to construct a deep learning
model on graphs. The main difficulty lies in the diversity and non-translational invariance of
graph data, which makes it a challenging task to define convolution on graph data (Xu et al.,
2020).

Machine learning model was not involved in graph data modeling at the earliest, such as
PageRank (Page et al.,, 1999), HITS (Ceglar & Roddick, 2006) and other commonly used algo-
rithms for webpage sorting. Some research work with the knowledge of graph theory, such
as using the eigenvalues and eigenvectors of Laplacian matrix for community analysis or
membership clustering (Ng et al., 2001). With the rise of deep learning, researchers began to
introduce deep learning models into graph data. The representative research work is Net-
work Embedding (Qi et al,, 2018), which learns fixed-length representations for each node
through the constraint of node proximity, such as DeepWalk (Perozzi et al., 2014), LINE (Tang
et al, 2015), Node2vec (Grover & Leskovec, 2016), etc. In this period, when solving specific
application problems, researchers usually model them as two-stage problems. Taking node
classification as an example, the first stage learns the expression of uniform length for each
node, and the second stage takes node expression as input to train the classification model.

Later, the researchers gradually focus on how to transfer deep learning model to the graph
data, then do end-to-end modeling. With the capabilities of CNN modeling the local struc-
ture and common node dependencies on the graph, graph CNN (GCNN) become one of the
most active and important branches of research. Bruna et al. (2013) based on graph signal
processing, transformed graph signal from spatial domain to frequency domain through
Fourier transform, and then defined convolution operation in frequency domain, and pro-
posed the CNN on graph for the first time. However, this spectral method has the disadvan-
tage of high space and time complexity. Defferrard et al. (2016) defined Chebyshev polyno-
mials of diagonal matrix of feature vectors as filters, that is, the method of fitting convolu-
tion kernel with Chebyshev polynomials was used to reduce computational complexity. Kipf
& Welling (2016) proposed a simple and effective layered propagation method by using
first-order approximation to simplify the calculation of the network model, and directly oper-
ating on graph structure data according to spectral graph convolution. Although this
method is classified as spectral method, it has begun to define the weight matrix of nodes
from the perspective of space. Inspired by this method, spatial methods were applied, and
researchers began to consider using attention mechanism and serialization model to model
the weight between nodes in graph. In this period, GCNN almost does not consider the
characteristics of the graph itself in the process of constructing convolution operator.

As the convolution operator is gradually perfect, research began to consider various graph
features, to pay close attention to how to model graph on high order information, and to
get fine design in view of the edge feature of graph or heterogeneous graph, etc. Hamilton
et al. (2017) proposed GraphSAGE. The model uses multi-level aggregation to obtain infor-
mation of neighbor nodes, so it can aggregate information of nodes with large distance
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around as the iteration continues. However, in GraphSAGE, each neighbor node is treated e-
qually, whereas in real scenarios, different neighbor nodes may play different roles on the
core node. Graph attention network (GAT)(Velickovic et al., 2018) aggregates neighbor nodes
through self-attention mechanism and realizes adaptivé matching of weights of different
neighbor nodes, thus improving the accuracy of the model. The weight of attention-based
graph neural network (AGNN)(Thekumparampil et al., 2018) is obtained by multiplying the
cosine similarity of feature vectors of two connected nodes by an adaptive coefficient B, to
achieve different weight allocation of neighbor nodes. Wave characteristic model (Wang et
al., 2021) uses node features with wavelet function weight to describe node neighborhood.
Edge-featured graph attention network (EGAT)(J. Chen & H. Chen, 2021) extend the use of
graph neural networks to those tasks learning on graphs with both node and edge features.
GRAPE (automorphic equivalence-aware graph neural network)(Xu et al., 2021) uses learn-
able automorphic equivalence (AE)-aware aggregators to explicitly differentiate the Ego-AE
of each node's neighbors with the aids of various subgraph templates. Typed-edge graphlets
degree vector (TyE-GDV) (Jia et al., 2022) embed edge type information in graphlets and gen-
erate a vector, it focuses on the rich information of the interaction between nodes, namely
edge attributes or edge types.

Since it was proposed, GCNN has attracted a lot of attention from researchers. Its applica-
tion fields include computer science, artificial intelligence, signal processing and other tradi-
tional machine learning fields, as well as interdisciplinary research in physics, biology, chem-
istry, and social sciences. In the study of graph convolutional networks (GCN), how to reason-
ably weight the importance of each node's neighbor nodes is a key issue. Although good
progress has been made, the importance of neighbor nodes has not been considered from
the network topology itself. The influence of a node depends not only on the number of
neighbors, but also on its own topology. Liu et al.(2021) distinguished the importance of
neighbor nodes by the proportion of the sum of all neighbor degrees in the central node
when searching for influence nodes by voting mechanism. Niu et al. (2021) constructed
weighted short text network with improved node weight based on word co-occurrence anal-
ysis. Important degree of nodes in the network has many characterization methods, and this
article is constructing weighted graph convolutional neural network (W-GCN) model, by us-
ing node degree and efficiency of nodes in the network to construct the node important de-
gree matrix. The W-GCN can distinguish importance degree of neighbor nodes and makes the
network focus on the important feature information of neighbor nodes in the process of
learning.

2 Related work

2.1 Graph convolutional network

Due to some of the traditional neural network models such as CNN in non-Euclidean data
structure does not have translation invariance, namely cannot adopt the same size of convolu-
tion kernels for convolution, they will not be able to handle such non-Euclidean graph data.
Thus, the GCN arises at the historic moment, made on the structure of irregular graph convo-
lution becomes possible.

Here is the GCN model improved by Kipf & Welling (2016). It is a neural network that oper-
ates directly on a graph and generates embedding vectors of nodes according to the infor-
mation of their neighbor nodes. Firstly, the Laplace matrix of GCN is calculated according to
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the relevant information of graph (mainly including node information and structure informa-
tion). Then the graph is convolved to extract the useful part of the original information. Fi-
nally, a fully connected neural network is added to classify and judge nodes. The specific
process steps are as follows:

We use G={V, E} to represent an undirected graph without self-loop, where V= {v, v,,...,
w1 is the set of all nodes; E={(vy, v,), i, j=1, 2, ... N} is the set of edges between nodes in the
graph; Generally, the connection relation between network nodes can be represented by net-
work adjacency matrix, namely, A= (ay); ;. .., v . If there is a connection between node v; and
node v;, then a; =1; otherwise, a; =0. We set that a; =0, i=1, ... N, which means that the ad-
jacency matrix A is a symmetric matrix with diagonal elements of 0. L=D-A represents the

Laplace matrix on the graph. Here D=diag {d. ..., dy} represents the network degree matrix, where
11
d=y M., a;is the degree of node v;. The normalized Laplace matrix is defined as L=1-D * AD *,

where I,ER"*" is the identity matrix. In addition, we use X to represent node features on
graph G, where X €R™P?, and X;€RPis the feature of the node v., nis the number of nodes,
and D is the number of features of each node.

The Laplacian operator can be obtained according to the Laplacian matrix, and the convo-
lution operation is carried out on the graph structure data. The hierarchical propagation
rules are as follows:

~ 1~~ 1
HED = g(DZAD 2HOW®)

Where , A=A+ 1y,D; = Z}.Zij, H® is the eigenvalue of the previous state of node, W ©
is the weight matrix of the CNN at the I-th layer, and o is a nonlinear activation function.

Firstly, the multiplication of the adjacency matrix and H" is to aggregate the values of the
adjacent nodes. In order not to lose the original information of the node, we often force
each node to have a self-loop, namely a connection to itself. That's the same thing as taking
the adjacency matrix A plus the identity matrix Iy . Noted as matrix A. But the matrix A is not
normalized, which will lead to a larger scale of node features after each multiplication, so
need to apply Laplace symmetric normalization for A, namely 2 _ 5—%;15—% By means of hi-
erarchical propagation rules, GCNN brings the sharing feature of local parameter of CNN in-
to the graph structure, making the receptive domain of each node improve more with the
increase of propagation layers, so as to obtain more information of neighbor nodes.

The GCN improved by Kipf & Welling (2016) is generally set as two layers, and its graph
convolution formula is:

A A
Z = f(X,A) = softmax(A- Relu(AXW©w )

1~~ 1

Where 2: DADZ . The weights w(© e RPXF are the weight matrix from the input layer
to the hidden layer. Similarly, w® e RP*F is the weight matrix from the hidden layer to the
output layer. In the whole training process, since the normalized adjacency matrix is a con-
stant in the training process, it is only necessary to conduct gradient descent training for the
weight matrix W of each layer.

2.2 Spatial graph convolution

On the basis of GCN, spatial methods of graph convolution have begun to develop, which
aggregate the information of neighboring nodes in different ways and directly apply convo-
lution to the graph. The GraphSAGE model not only focuses on first-order neighborhood in-
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formation, but also aggregates further node information, allowing nodes to learn more di-
verse information. However, in GraphSAGE, the importance of each neighboring node is not
distinguished, and in practical applications, different neighboring nodes may play different
roles in the central node. AGNN has proven that the most critical part of a GCN is the con-
volutional layer rather than the nonlinear activation layer. Secondly, it proposes to use the
cosine similarity of node features to calculate the weights of two adjacent nodes, thereby
achieving different weight assignments for neighboring nodes. GAT utilizes attention mecha-
nism to assign weights to neighboring nodes, thereby learning more information about
neighboring nodes. When aggregating messages from neighboring nodes, the key issue is
how to allocate the weights of each node's neighbors reasonably. Currently, when perform-
ing convolution operations from the perspective of spatial methods, the relationships be-
tween nodes have not been explored from the perspective of network topology. Therefore,
this article focuses on the node degree and efficiency to construct a node importance ma-
trix, in order to weight the GCN.

3 The proposed W-GCN model

Graph structure can be used to represent some non-Euclidean data in the real world. Ob-
serving the graph structure data, it can be found that different nodes in the graph often
have different importance, and usually the nodes in the central position play a key role in
adjacent nodes. If GCN can better pay attention to the feature information of these impor-
tant neighbor nodes in the process of information aggregation of nodes, it can have a more
comprehensive learning of graph structure, and then improve network performance.

The degree of a node in network refers to the number of nodes directly connected to the
node. It is generally believed that the importance of a node has a great relationship with its
degree, so the degree of a node can directly reflect its influence on its neighbor nodes. The
larger the degree value is, the greater the importance of the node contribution to its neigh-
bor nodes is.

Network efficiency E refers to the average sum of reciprocal distances between all node
pairs in the network, which represents the average difficulty of network information flow.
The higher the network efficiency is, the easier the network information flow is (Zhou et al,

2016) oLy
n(n - 1) e dlj

Where n is the number of nodes in the network, and dj is the distance between nodes v;
and v;. The distance between nodes refers to the number of edges on the shortest path be-
tween two nodes. If there is no path between v; and v;, then dj_ .

In this paper, the nodes in graph structure data are weighted according to their degree
and efficiency in network. Figure 1 is an example.

Note: The depth of the color indicates the weight of the node
Figure 1 The central node aggregates information about neighbor nodes based on their
weights



80 DATA SCIENCE AND INFORMETRICS

As shown in Figure 1, we use the depth of the color to indicate the weight. As to the node
1, which have two neighbor nodes, 2 and 3. There are four neighbor nodes for node 3, which
has higher efficiency than other nodes (for example node 2). In the processing of aggrega-
tion information for node 1, if more information about node 3 is taken, it means more infor-
mation in the graph is considered. Therefore, this paper constructs node importance degree
matrix, combining the node degrees and its efficiency, which considers its role in the network
information flow and its contribution to the adjacent nodes. And then normalize the matrix
through softmax function for convolution operation, instead of Laplace normalization of ad-
jacency matrix. It enables nodes to well aggregate information about different neighbor
nodes.

The construction process of node importance matrix is as follows:

Step 1: Importance contribution matrix (Liu et al., 2021). In an undirected network with n
nodes, if there is a link between node v; and v;, but the nodes have different importance to
each other, when considering the importance of neighbor nodes to the central node, we first
calculate the sum of the degrees of all neighbor nodes of the central node, and then distin-
guish the importance of neighbor nodes with the proportion of each neighbor node in the
sum of all neighbor nodes. If the degree of node v; is D;, the importance of node v;to v; node
is expressed by Di/X, vw) Pk N is the neighbor node set of nodes v, and v, is the k-th
neighbor node in the neighbor node set of nodes v; . The importance contribution ratio val-
ues of all nodes to their neighboring nodes are shown in a matrix, thus forming the impor-
tance contribution matrix of available nodes, denoted as Hi:

1 812D, 81nDn
ZvjEN(m) Di ZVjEN(vl) D/
621D1 1 62nDn
Hic= Zujezv(uz) D; Zv,eN(uz) D;
8n1D1 8n2D> 1
7Zv/EN(vn) Dj ZU]’EN(vn) Df

The element on the diagonal of the matrix is /, indicating that the contribution ratio of the
node to its own importance is 1. Node importance contribution matrix H, has the same
structure as adjacency matrix and is regarded as a mapping of it. The mapping rule is as fol-

lows:
{5ij = 6;D;/YvenwyDui #j
;- Li=j

Where §; is the contribution allocation parameter. If v; and v; are directly connected, the
value is 1 ; otherwise, the value is 0.

Step 2: Node importance matrix Hz The degree is used to construct the importance corre-
lation between nodes, and the efficiency of nodes is used to represent the location informa-
tion of nodes. ) .

The efficiency of node K'is I , where I, = ;Z:;L#kd_m . Node efficiency represents the diffi-
culty in information transmission of a node to other nodes, and using node efficiency to
measure the global importance of a node is a reasonable indicator. Therefore, the larger the
efficiency value of node is, the more important the node's position is in the network informa-
tion transmission process. Thus, the efficiency of nodes reflects the importance of nodes to a
certain extent.
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The combination of the efficiency values and the importance contribution value is used to
replace the importance contribution ratio value of nodes in Hy, and then get the importance
evaluation matrix of nodes.

I 612D212 51nDn1n 1
1
ZvjEN(vl) Dj ZVjEN(‘Ul) Df
521D111 i 52nDn1n
e 2 e —
Hp = ZvjEN(vz) Df ZvjEN(vz) D/

0n1D114 On2Ds I

I

_ZvjEN(vn) Df ZVjEN(Un) Dj

Where element of Hgi, j) represents the importance contribution value of node v; to node
v; . It can be seen that the importance contribution value of a node to its neighbor nodes is
related to its own efficiency and degree value. The greater the efficiency value and degree
value of a node are, the greater the importance contribution value of its neighbor nodes is.

In addition, adding an adaptive coefficient B (Thekumparampil et al., 2018), with one S for
each aggregation layer, makes it possible to impose a higher weight to the relevant impor-
tant neighbors.

The constructed matrix P and adjacency matrix A have the same form, P; is for the two
nodes without edge connection, and P; =p*Hy; for the two nodes with edge connection.

In this paper, the settings of convolutional layers are consistent with those of GCNs. The
convolution formula is:

Z = f(X,P) = softmax(P - Relu(PXW©@)Ww®),
4 Experiments

4.1 Benchmark datasets

The proposed W-GCN model is examined on semi-supervised classification tasks using
three reference datasets of graph neural network, namely Cora, CiteSeer and PubMed of ci-
tation network. The citation network dataset consists of text as nodes and citation links as
directed edges. Each node has a manual annotation topic from a finite set and has a feature
vector. Although the network is directed, we used an undirected version of the graph in all
our experiments, which is common in baseline approaches. Statistical descriptions of
datasets are summarized in Table 1.

Table 1 The properties of various graph datasets used for the semi-supervised classification
task

Dataset Type Nodes Edges Classes Features Label rate

CiteSeer Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052

PubMed Citation network 19,717 44,338 3 500 0.003

4.2 Experimental settings

In this part, we only train and test the W-GCN model, a new GCN based on node impor-
tance. Instead of using validation set labels in training, we use them to optimize hyperpa-



82 DATA SCIENCE AND INFORMETRICS

rameters such as dropout rate, learning rate, and L2-regularization factors. According to the
previous method of Kipf & Welling (2016), we divide graph data into training set, verification
set and test set. In this model, the graph convolution layer and GCN settings are the same,
with one convolution layer and one SoftMax layer. The learning rate was set to 0.005, the
number of hidden layers was set to 32, and the dropout rate was set to 0.5.

4.3 Experimental results and analysis

In the following experiments, standard benchmark data splits are used just as those have
done in the relative literature. All experiments were run on the same fixed partition, which
with 20 labeled nodes per class, 500 for validation, 1000 for testing, and the rest as unlabeled
data.

In text classification, the evaluation index can be used to judge the performance of the
classifier and to analyze the model. The common indexes of classification and evaluation are
accuracy, recall and precision. True positive (TP) means to predict a positive class as a positive
class. False negative (FN) means to predict a positive class as a negative class. False positive
(FP) means to predict a negative class as a positive class. True negative (TN) means to predict
a negative class as a negative class. Accuracy is a statistic for all samples expressed as:

Accuracy = &
TP+TN+FP+FN

The accuracy results of each method on three datasets are shown in Table 2. The accuracy
of the baseline methods compared in the experiments are obtained from the existing litera-
ture. If baseline results are not reported in relative literature, we leave them blank in the
table rather than running these experiments on untuned parameters ourselves. The visualiza-
tion of classification in CiteSeer and Cora datasets after dimensionality reduction are show in
Figure 2 and Figure 3.

X 100%

Table 2 Performance comparisons of semi-supervised classification methods (%)

Methods Cora CiteSeer PubMed
T-SVM 57.5 64.0 62.2
DeepWalk 67.2 43.2 65.3
Node2vec 74.9 54.7 75.3
LP 68.0 45.3 63.0
DCNN 76.8 — 73.0
GCN 815 70.3 79.0
AGNN 83.1 7.7 79.9
GAT 83.0 72.5 79.0
W-GCN (in this study) 83.1 72.2 79.0

Note: “—": not reported in relative literature. T-SVM: transductive support vector machines; LP: label

propagation; DCNN: dynamic convolution neural network; GCN: graph convolutional network; AGCN:
adaptive graph convolutional neural network; GAT: graph attention network; W-GCN: weighted graph
convolutoin neural network.

Table 2 showed that it is very important to make use of the structure and node features of
graphs simultaneously in semi-supervised learning of graphs. Methods that use both the
structure and node characteristics of the graph get more accurate results than those do not.
For example, T-SVM as a semi-supervised method, use only labeled and unlabeled tags and
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node characteristic attributes. DeepWalk, based on Skip-Gram, ignore node characteristic
attributes, and only use tag and graph structure information. So, their accuracy is low.

The W-GCN, based on network topology to assign different weights to nodes respectively,
surpass the GCN. It shows a 1.6% improvement in accuracy in the Cora dataset and 1.9%
improvement in the CiteSeer dataset. The accuracy in PubMed dataset is the same as GCN.
This shows that the method proposed in this paper can better allocate the weights of nodes
to some extent, because it pays more attention to the feature information of important
neighbor nodes than others in the process of network learning.

Combining Table 1 and Table 2, the number of nodes may be an influencing factor for the
accuracy. The W-GCN get significant improvement over GCN in Cora and CiteSeer datasets,
which with relatively fewer nodes. Meanwhile, the accuracy of W-GCN in CiteSeer data sets is
also slightly higher than that of AGNN. These indicate that the proposed method has certain
advantages. But the accuracy of W-GCN and GCN are the same in PubMed dataset, which
with more nodes in the graph. These show that, the more nodes in graph, the lower the
efficiency of each node, and the less the recognition ability of the importance of neighbor
nodes. Therefore, in the follow-up work, we consider using local efficiency to construct the
node importance degree matrix of nodes. By this way, the importance of neighbor nodes
may be better distinguished and classification accuracy may be improved.

Figure 2 Visualization of nodes classification in CiteSeer data after dimension reduction

Figure 3 Visualization of nodes classification in Cora data after dimension reduction
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5 Conclusions

In the graph node classification task, the convolution operator of graph convolution is the
key part, which is related to whether the whole network can learn information of each neigh-
bor nodes more reasonably. That is also the focus of research in the field of GCN and its
variants.

In this paper, we propose a new method, which assigns different weights to each neighbor
node to complete the semi-supervised node classification task on the graph. The W-GCN fo-
cus on the importance of the node in the network and the contribution to the central node,
and able to distinguish whether a node is important or not. The important node gains more
weight than others, which make the convolution operator get more important information of
neighbor nodes. The superiority and effectiveness of W-GCN are also proved over GCN and
other models through the experiment on three benchmark datasets. In addition, the perfor-
mance of the model is related to the size of the graph.

In the further research, it is considered that W-GCN should be applied to the task of text
classification, and it would get better effect on the problems. At the same time, better
method should be studied to distinguish the importance of nodes. From several parts, such
as the feature extraction of each layer of nodes, feature fusion, better use of node informa-
tion, to ensue improve the accuracy of the node classification.
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