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ABSTRACT

For real-time edge systems such as autonomous driving, not only the correctness of task
functions, but also the response and processing time of tasks should be satisfied. In the
hardware selection phase of a real-time system, time series analyses must be performed on the
hardware platform running real-time applications. At present, the common method of
worst-case execution time (WCET) analysis focuses mainly on analyzing the impact of hardware
platform architecture or task execution process on the task running time. However, different
tasks in an autopilot system have different levels of urgency, and preemption between tasks is
the main factor that affects the task execution time. The key problem is how to quantify the
time fluctuation caused by task preemption for each subtask of the autopilot system running on
a fixed hardware platform. This paper presents a time analysis method for a real-time
application based on a queuing theory and preemptive scheduling strategy, which assigns
different priorities to tasks according to their time urgency and preemptive scheduling
according to task priority. Through an experimental case study, the impact of the running time
of each subtask in a real-time application with task priority preemptive scheduling is analyzed,
along with the impact of changes in hardware platform performance on such real-time
applications.
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1 Introduction

With the rise of edge computing, autonomous driving technology has developed rapidly
(Yurtsever et al., 2020). Self-driving cars must extract meaningful information from an
amount of raw data collected by sensors, understand the surrounding environment, and
continuously make decisions based on changes in that environment (Lim et al., 2019). Most
of the tasks in this process are urgent, and the most important feature is that data process-
ing and event response have strict time constraints. For example, the completion time for
target detection, vehicle obstacle avoidance, target positioning, path planning, and other
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subtasks should be accurately controlled within a safe range. Once the task exceeds the time
limit, it may bring unimaginable consequences (Bock et al.,, 2018; Li et al., 2020). Therefore,
the selection of a hardware computing platform that can meet the real-time requirements of
an autopilot system must be considered in the design process of the system. Consequently,
in the design of an autonomous driving control system, it is necessary to analyze and predict
the time fluctuation of each subtask when it is executed periodically on the fixed hardware
platform.

The WCET is often used as an indicator to evaluate whether a task can be completed on
time (Wilhelm et al., 2020). Mezzetti and Vardanega (2011) proposed a measurement-based
single-thread architecture method, which calculates WCET estimates by multiplying the
longest observed execution time (LOET) by the safety margin. Davis et al. (2018) designed a
multicore response time analysis framework, which directly formulates the response time
based on the demand for different hardware resources, so that the response time analysis is
decoupled from the dependence on the context-independent WCET value. This type of
WCET timing analysis mainly focuses on analyzing the influence of the hardware platform ar-
chitecture or the execution process of the task itself on the running time of the task. Howev-
er, this is not suitable for the timing analysis method of an autopilot system. There are vari-
ous types of tasks maintained in an autopilot system, such as obstacle avoidance planning,
target detection, navigation, and entertainment (Bock et al., 2018). The urgency of different
tasks may vary significantly, and external environmental conditions such as weather and road
sections can also affect the urgency of tasks. Among the example tasks listed previously, ob-
stacle avoidance planning has absolute priority compared with entertainment demand. Ow-
ing to the number and variety of tasks and the requirement to protect the safety of human
life, the urgency of tasks cannot be ignored in the design of autopilot systems. Unlike the
task round robin scheduling based on time slice adopted by general time-sharing systems,
priority is allocated to ensure that the tasks with high urgency in autonomous driving can be
completed within a specified time. The autopilot system generally runs on a custom re-
al-time operating system (Jo et al., 2014), which sacrifices some running time for less urgent
tasks. When the computing resources are insufficient, the low-priority task is interrupted by
the high-priority task, and the system assigns resources to the higher-priority task. There-
fore, real-time systems such as autopilot systems often use preemptive scheduling algo-
rithms based on task priority. Task preemption is the main factor that affects the execution
time of tasks.

It is necessary to quantify the time fluctuation caused by task preemption when an autopi-
lot system runs on a hardware platform, because it is essential for the design and hardware
selection of an autopilot system. To solve these problems, a time analysis method is pro-
posed for real-time applications based on a queuing theory and preemptive scheduling
strategy. The main aspects of this study are as follows:

1) Based on a queuing theory and preemptive scheduling algorithm, a real-time system
model suitable for automatic driving is established.

2) The time fluctuation of three subtasks of autopilot system in real software and hardware
environment is obtained by testing. Analyzed the influence of the running time of each sub-
task in real-time application running by the preemption factor between tasks, and discussed
the hardware requirements of such real-time application.

The remainder of this paper is organized as follows: Section 2 presents a discussion re-
garding related work, and Section 3 details the analysis of the interaction among multiple
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tasks. Section 4 describes our method model, and Section 5 introduces the experimental
configuration and analysis results. Finally, the paper is concluded and directions for further
research are discussed in Section 6.

2 Related work

2.1 Autopilot system

Since the Eureka Project PROMETHEUS (Network, E. U. R. E. K. A., 2013), several interna-
tional studies and experiments on automatic driving systems have been conducted. Among
the most advanced automatic driving systems (Akai et al., 2017; Li et al, 2020; Liu et al.,
2019; Maddem et al., 2017; Wei et al.,, 2013; Zhang & Letaief, 2019; Zhao et al., 2021), an in-
telligent system for a single vehicle is the most common type. A single car with such a sys-
tem has automatic driving functionality even if it is not connected to the Internet. These au-
tomatic driving systems realize vehicle intelligence by modularization. Their main design
concept is that different functions are divided into different modules (Behere & Torngren,
2015; McAllister et al., 2017), according to the need for driverless functionality, which finally
constitute the entire automatic driving system. The core functions of modular automatic
driving can be summarized as follows: synchronous positioning and mapping, perception, e-
valuation, planning and decision-making, vehicle control, and human-computer interface. In-
dividual development of each module divides the difficult task of designing an autonomous
driving system into a set of easy-to-solve sub-problems. At the same time, the automatic
driving system has more and more functions based on modular development. For example,
Bai et al. (2015) proposed an online planning method with intention awareness to estimate
the unknown intentions of nearby pedestrians, to facilitate safe, effective, and stable driving.
Wang et al. (2017) proposed a new moving object detection and tracking system that com-
bines light detection and ranging measurements with visual sensor output to achieve im-
proved performance. The WiBot (Raja et al., 2018) designed by Raja and others can detect
the driver's inattentive driving behavior and realize the interaction between the driver/pas-
senger and the vehicle by analyzing the human movements in the video data in the car,
thereby improving driving safety and driving experience. The common characteristic of these
functional tasks is that event response and data processing generally have strict time con-
straints, and the urgency of tasks is different. For example, the urgency of obstacle detection
tasks is higher than that of entertainment tasks, and thus it is necessary to classify each sub-
task in the automatic driving system. Dai et al. (2019) categorized tasks into three levels ac-
cording to their urgency, namely, extremely important applications (EIAs), very important ap-
plications (VIAs), and general important applications (GIAs) and assigned the task deadline
according to the urgency of the task and the external environmental impact.

2.2 Time series analysis

At present, time series analysis methods for time-critical applications can be divided into
two categories (Wilhelm et al., 2008): modeling and measurement-based approaches. Wenzel
et al. (2008) and Pellizzoni et al. (2010) analyzed memory access latency in systems in which
multiple parallel tasks share the main memory. These methods require a detailed analysis of
the memory access patterns of the application and a deep understanding of the memory ar-
bitration strategy. Schranzhofer et al. (2010) divided the task into a series of super blocks
and used a time-division multiple access strategy to schedule tasks. The WCET of each super
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block was analyzed to calculate the WCET of the task. Kelter and Marwedel (2017) proposed
a technique to explore interleaving in parallel mission systems and an exclusion criterion to
prove that interleaving will never occur, and they integrated this technique into existing
WCET analysis methods. The aforementioned research analyzes the performance fluctuation
by modeling; however, many assumptions are introduced in the modeling process, and they
are difficult to realize in practical applications.

Measurement-based time series analysis is another commonly used method that mainly
analyzes time changes by designing test cases and experimental cases according to varia-
tions in the hardware architecture. Mezzetti and Vardanega (2011) proposed a measure-
ment-based single-thread architecture method that estimates the WCET by multiplying the
LOET by the safety margin. Iorga et al. (2020) propose a method of measurement based on
percentiles and confidence intervals, and show that it provides both competitive and repro-
ducible observations.

However, these application timing analysis methods are not suitable for autopilot systems.
In autopilot systems, the urgency of different tasks may vary significantly. For example, acci-
dent prevention has absolute priority compared with entertainment needs. Therefore, to en-
sure personal safety, the task of automatic driving systems adopts preemptive scheduling
strategy to ensure the real-time performance of high-priority tasks. When analyzing the tim-
ing of such preemptive real-time applications, the first consideration should be the time fluc-
tuation caused by preemption between tasks.

3 Interaction between multiple tasks

In a preemptive multitask real-time system, each subtask has its own priority. A combina-
tion of any two tasks falls into one of two states:1) A combination of tasks with different pri-
orities, 2) A combination of tasks with the same priority. For these two different types of
combinations, the impact of tasks on runtime is also different.

3.1 Tasks of different priority

In a real-time system based on a preemptive scheduling algorithm of task priority, a run-
ning low-priority task is interrupted by a newly released high-priority task when the system
computing resources are insufficient, and the system does not switch back to the original
task until the high-priority task is finished. In the process of task preemption, the running
time of the low-priority task is mainly affected by two aspects: task preemption and context
switch. Figure 1 shows an example of a running task preempted by a high-priority task and
then resumed.
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The execution process of task A is described as follows: task A arrives and starts running at
time 0, and task B arrives and is ready after T, time. Because task B has a higher priority than
task A, the system scheduler will perform a context switch, interrupts the operation of task A,
and saves the corresponding state information for later recovery. The system starts to load
the status information of task B and switches to task B for running. Task C arrives after T?
time. Because the priority of task C is higher than task B, the system generates interrupt
nesting and switches to task C to run. After the time of T%, task C finishes running, the
scheduler restores the status information of task B, and task B resumes running from the
break point. After task B has finished running, task A will resume from the break point until
the task is completed. Among them, T, and T%, represent the time taken to switch from
task A to task B and from task B to task C, respectively, and T3, and T4, correspond to the
recovery time of their respective tasks. Taking the lowest priority task A as an example, when
no preemption occurs, the execution time of task A alone is ET=T.+T2. After preemption,
the total time of task A is ET'= T+ T2+ Th+ T+ T2+ T4+ Y 4 T, which is more time
consumed by context switching and the running of task B and C.

It should be noted that during the execution of Task B, if a task with a higher priority
arrives, interrupt preemption nesting occurs.

3.2 Tasks of same priority

If the tasks have the same priority, it can be considered that the two tasks have the same
real-time requirements. Therefore, the system should be as fair as possible in the allocation
of computing resources with respect to time, to avoid a situation in which a task occupies
computing resources all the time. The real-time system model established in this study
adopts the same scheduling method for tasks with the same priority as the time-sharing
scheduling strategy. Figure 2 shows an example of interaction between two tasks of the
same priority running together.

Figure 2 Impact between tasks of the same priority

For two real-time subtasks, task A and task B have the same priority, and the time slice
rotation method is adopted to ensure the fair scheduling of tasks. At each time, a task is
assigned to a specific time slice. When the time slice has elapsed, regardless of the priority of
the thread, the task is not executed again. Instead, it enters the ready queue and waits for
the arrival of the next time slice. Task B arrives after task A runs for T%,, the corresponding
state information is saved after the time slice of task A has elapsed, and then the two tasks
are executed alternately. Therefore, task A in this case has a greater proportion of the
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running time of Task B and the time cost of multiple context switching compared to running
alone.

4 Preemptive real-time system model

The core of the autonomous driving system can be summarized into three layers: Percep-
tion, Planning and Control. In the process of automatic driving, the perception layer and the
planning layer continuously generate various tasks, and most of them are computationally
intensive tasks. The unknown nature of the real road conditions leads to the randomness of
the arrival of various tasks, that is, the release frequency of vehicle obstacle avoidance and
target detection tasks is not fixed, but randomly distributed. Additionally, various tasks in the
real-time system have different sensitivity to time, and the system prioritizes the real-time
performance of more urgent tasks, so the tasks have their own preemptive priority. Accord-
ing to the priority preemption scheduling strategy, these published tasks are allocated to
each computing core of the hardware platform. If the computing cores are full, they enter
the ready queue and wait for the next assignment. We can regard these computing cores as
the service desk of the service system, so the entire autopilot real-time system model can be
regarded as a preemptible M/M/C queuing model with task priority. The service flow chart of
the model is shown in Figure 3.

Figure 3 Preemptive real-time system based on M/M/C queuing model

The model consists of three parts: task publishing, waiting queue, and task scheduling.

4.1 Task release

4.1.1 Task selection

Automatic driving vehicles need to perceive changes in the external environment through
their sensors. When processing the data collected by sensors, the vehicle computing
platform produces various tasks. As shown in Figure 4, autonomous driving subtasks,
including path planning, obstacle detection, navigation, and entertainment, generally have
different degrees of urgency. For example, the urgency of obstacle detection is higher than
that of entertainment, and thus it is necessary to classify them. According to the urgency of a
task, it can be categorized into one of three levels: EIA, IA, and GA. In this study, the three
types of tasks are selected and assigned different priorities as input tasks of the real-time
system model.
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Figure 4 Classification of autonomous driving tasks

1). Local obstacle avoidance: the task is mainly used in vehicle obstacle avoidance, vehicle
emergency stopping, and other scenarios. This study implements a local obstacle avoidance
task based on an artificial potential field algorithm. Because the task involves personal safety,
its scheduling priority is set to the highest.

2). Global path planning: this task is an important task in an autonomous driving
decision-making system, mainly for vehicle route navigation services. In this study, a path
planning task based on A-star algorithm is implemented. Because the vehicle should give
priority to the obstacle avoidance task, the priority of the path planning task is set as
medium.

3). Entertainment task: this type of task is an application program related to the passenger
riding experience. This study simulates the operation of this type of task through the
program, and the priority of this task is set as the lowest.

4.1.2 Task arrival rules

The arrivals of the three types of tasks are independent and identically distributed. The
arrival process of each type of task is a Poisson flow input process, and the arrival intervals
of the tasks follow a negative exponential distribution with A;, A,, A;, as follows:

P {T,<x} =1-e¥, x>0 (1)

Here, A represent the average numbers of arrivals of the i" task in a unit time. From this,
three independent and identically distributed random variable sequences can be generated:
{UY, k>1} , {U%, k>1} , {U3, k>1} \U% (i=1,2,3) ,represents the arrival interval between
the (k-1)* task and the k" task of the i task. Let S\, be the arrival time of the k* task of the
it task; then:

Si=U, S\ =U+UL+... +U' (2)

We can determine the specific arrival time of each of the three types of tasks through

Formula (2).

4.2 Wait queue

Most of the tasks generated during the operation of the autonomous driving system will
not be executed immediately. When a task arrives in the system, if all the service desks are
busy and the priority of the task is not sufficiently high for preemption, the task enters the
waiting queue and wait for the next system scheduling. Tasks with Three types of tasks are
stored in the waiting queue, with respect to their priority, which are divided into the
following two situations according to the service progress:
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1). Since its release, it has never been scheduled to run by the system, and the service
progress of such tasks is 0.

2). When service is interrupted because it is preempted by a higher-priority task, it re-en-
ters the queue to wait for the next scheduling. The service progress of such tasks is saved;
that is, the service does not need to be restarted for the next run.

The real-time system model established in this paper adopts the waiting system queuing
rules, and the queue length is unlimited. The task will remain in the ready queue until it is
scheduled and executed by the scheduler.

4.3 Task scheduling and running

At present, the main computing platform architecture adopted by the autonomous driving
system is basically Intel's X86, which generally has multiple execution units and can execute
tasks in parallel. The task scheduler is mainly responsible for scheduling the issued priority
tasks in the ready queue to the corresponding hardware execution unit to run. The scheduler
of the real-time system adopts a preemptible scheduling strategy with task priority. When a
task with a higher priority arrives in the system, regardless of the service progress of the task
being run, the service must be suspended and replaced by this high-priority task service. Be-
cause tasks of the same priority may appear, the service rules of the model are divided into
the following two types according to the priority combination:

1). Different priority tasks: High-priority tasks have interrupt preemption rights over
low-priority tasks. For example, an IA-level task in the system is running, and an EIA-level
task is released at this time. If there is an idle service desk, the system immediately serves the
EIA-level task; if there is no idle service station, the running IA-level task will be interrupted
and returns to the waiting queue. The service desk starts to serve the EIA-level tasks. When
the EIA-level tasks are completed, the system traverses the waiting queue, calculates the
scheduling weight according to the priority, and selects the task with the highest weight to
run.

Algorithm 1 : Preemptive scheduling algorithm

Input: waiting queue , Q ; newly arrived task , task_new ; running task,task_now
Output: the next task to be executed,task_next

1 : if Priority(task_new) > Priority(task_now) then
2 : intertupt(task_now);

3 addToQueueHead(task_now,Q);

4 task_next=task_new;

5 : else

6 addToQueueHail(task_new,Q);

7 . foreach task € Q do

8 calculateSchedulingWeight(task)

9 if remainTime(task)==0 then

10: addToQueueTail(task);

11: resetRemainTime(task);

12: endif

13: end for

14 :  task_next=findMaxWeightTask(Q);
15 : end if

16 : return task_new;
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2). Tasks of the same priority: Fair scheduling is maintained between tasks of the same pri-
ority. A time-sharing scheduling strategy is adopted between tasks. When a task's current
time slice has elapsed, the task actively gives up computing resources and is placed at the
end of the waiting queue until the next cycle is re-divided into time slices before continuing.
Then, the system selects task at the head of the queue with the same priority to start run-
ning.

The general flow of the preemptive scheduling algorithm corresponding to the service rule
is shown in Algorithm 1.

5 Experiments and results

5.1 Experimental environment and configuration

The hardware processor mainly used in the experiment is the Intel Core i5-8400, which has
six physical cores, does not support hyper-threading technology, and executes up to six
thread tasks simultaneously. We assign the following functions to its cores:

1). Corel: the publisher that runs local obstacle avoidance tasks, and the task release inter-
val obeys the negative exponential distribution of parameter 2, . The actual operation of the
local obstacle avoidance task is the classical obstacle avoidance algorithm in automatic driv-
ing: the artificial potential field method. The program realizes a fixed start point, end point,
and a local path planning operation under the map.

2). Core2: the publisher that runs the path planning task, and the task release interval
obeys the negative exponential distribution of the parameter 2, . The path planning task us-
es a heuristic search algorithm: A-star path finding algorithm. A single task completes the
optimal path search operation with a fixed starting point and ending point under the same
cost map.

3). Core3: A publisher that runs entertainment tasks, and the task release interval obeys the
negative exponential distribution of the parameter 2; . The entertainment task implemented
in this experiment is a simulation task, and its running time is longer than the local obstacle
avoidance task and the global path planning task.

This experiment runs on the mature Linux operating system (Ubuntu 16.04). The release of
a task is equivalent to the creation of the corresponding task thread, and the completion of
the task is equivalent to the destruction of the task thread. At the same time, the processes
of publishing tasks by the three task publishers are independent of each other. To avoid the
migration of task publishing threads between different cores of the processor, we use the
sched setaffinity system call to bind the publishers of the three types of tasks to the corre-
sponding cores. The remaining cores, Core4, Core5, and Core6, are used as optional task op-
eration cores.

Due to the large difference in the running time of the three tasks, in order to eliminate the
influence of measurement scale and dimension, this paper uses the "coefficient of variation
(CV)" to measure the degree of dispersion of each group of data. The calculation formula is

as follows:
n 2
cv="Y2=a XX 1009 (3)

nX
where X is the mean of sample X .
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5.2 Comparison of preemptive real-time system and general time-sharing sys-
tem

First, the running times of the three types of tasks described in Section 4.1 are measured,
and the measurement result is the average running time of the task executed 100 times, as
shown in Table 1.

Table 1 Single task running time.

Task Name Time
Local obstacle avoidance 35.1ms
Global path planning 0.24s
Entertainment 1.26s

For the time-sharing system, the Linux default process scheduling strategy SCHED OTHER
is adopted. To quantify and compare the difference in volatility of task sets on the two types
of scheduling systems, we fixed the probability distribution parameters of the above three
types of tasks as\;=1.4, A,=0.9,A;=0.4; and at the same time, the number of schedulable
cores is set to 1. Only adjusting the scheduling strategy of the system, we record the time
changes of three different priority tasks for 200 cycles in this experiment.

As shown in Figure 5(a), on a preemptive real-time system, the average running time of
the local obstacle avoidance task with the highest priority is approximately the same as when
it runs alone. On the general time-sharing system, the average running time increased by a
factor of 5.24. Compared with general time-sharing systems, the average time consumed by
preemptive real-time systems has been reduced by 80.8%. The coefficients of variation are
CVes=13.5% and CV=78.0% . The task stability of the preemptive real-time system is
significantly better than that of the time-sharing system.

Figure 5(b) shows a comparison of the running time of the global path planning task on
the two types of systems. When running on a preemptive real-time system, the average
running time is 1.29 times that of a single running system. On the general time-sharing
system, its average running time increased by a factor of 5.67. The average time
consumption of preempting real-time systems is 77.2% lower than that of general
time-sharing systems. The coefficients of variation are CVx=28.1% and CV=71.7, and the
stability gap between the two types of systems is reduced.

For the entertainment task with the lowest priority, as shown in Figure 5(c), the task runs
longer on the preemptive system than on the general time-sharing system, and the average
time consumption increases by 20.7%. The running time on the preemptive system is 4.71
times that of the stand-alone operation, and that of the general time-sharing system is 4.12
times that of the stand-alone operation. Considering that the entertainment task has no
urgent requirements for running time, it is still within the acceptable range of the system.
The coefficients of variation are CVzs=69.2% and CVrs=77.1% , and the volatility is similar.

Overall, for tasks with higher priority, preemptive real-time systems have more advantages
over general time-sharing systems in terms of real-time and stability requirements. However,
for tasks with lower priority, the running time may be more time-consuming than on the
time-sharing system. Therefore, in the priority allocation process of a subset of real-time
application tasks, the urgency of each task must be fully considered.
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Figure 5 Time analysis under different conditions.

5.3 Analysis of the impact of schedulable cores on real-time applications

The number of schedulable cores of the hardware platform for actual real-time application
deployment is generally more than one, that is, subtasks can run in parallel. The experiment
recorded the running time of each priority task when the number of schedulable cores N=1,
2, 3 under the preemptive real-time system by adjusting the number of schedulable cores.
The parameters of the arrival distribution of the three types of tasks are fixed as: A,=0.8,
A,=0.3,A;=0.08, and the scheduling method adopts preemptive scheduling with priority. The
results are shown in Figure 5(d, e, f).

Calculating the ratio of the average time to the time when running tasks alone at all levels
under different number of scheduling cores:
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Table 2 Impact of the number of schedulable cores on task time

Number of tasks and Task Names
schedulable cores Local obstacle avoidance Gilobal path planning Entertainment
N=1 1.01 1.29 4.71
N=2 1 1.04 1.19
N=3 1 1 1.02

As shown in Table 2, as the number of schedulable cores N increases, the real-time
performance of tasks of each priority is improved. For tasks of different priorities, the lifting
effect is different. For the local obstacle avoidance task with the highest priority, because its
real-time performance under the real-time system is good, the improvement effect is not
obvious. For the entertainment task with the lowest priority, the average time consumption
when the number of scheduling cores is 3 is 78.3% lower than that when the number of
scheduling cores is 1, and the real-time performance is improved the most.

5.4 Impact of task arrival distribution on real-time systems

When an autonomous vehicle is driving under different road conditions, the frequency of
each subtask may be different. For example, when driving on a typical urban road, the
number of obstacle avoidance tasks increases significantly. In this section, by adjusting the
distribution parameter \; of each subtask publisher, we study the impact of the arrival
distribution of each priority task on real-time applications. The experiment is carried out
considering following aspects:

5.4.1 Impact of \, on the running time of tasks at all levels

We the fixed global path planning and entertainment task arrival distribution parameters:
A=0.4, A;=0.2. To make the experiment results more evident, we set the number of
schedulable cores N = 1, and the experiment records the ratio of the average running time
of tasks at different A; to the individual running time.

Figure 6 Analysis of hardware requirements for real-time systems
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As shown in Figure 6(a), with the increase in A, the number of local obstacle avoidance
tasks per unit time increases, and the running time of the three priority tasks increases, but
the impact intensity of tasks at all levels is different. The local obstacle avoidance task is the
highest-priority task, and its running time is mainly affected by the round-robin scheduling
between tasks at the same level, such that its performance is less degraded. The priority of
global path planning tasks is lower than that of local obstacle avoidance tasks, and the
probability of being interrupted by obstacle avoidance tasks increases during operation, such
the performance degradation is more obvious than that for obstacle avoidance tasks. For the
entertainment task with the lowest priority, because obstacle avoidance and path planning
tasks interrupt its operation, the average running time increases the most.

5.4.2 Impact of \, on the running time of tasks at all levels

The arrival distribution parameters of the obstacle avoidance and path planning tasks are
M=0.2, 2;=0.2, and the number of scheduling cores is 1. The ratio of the average running
time of all levels of tasks under different A, to individual running was recorded.

It can be seen from Figure 6(b) that as A, increases, the average running time of path
planning tasks and entertainment tasks increases. Because the path planning task interrupts
the entertainment task, the performance of the entertainment task declines even more. The
local obstacle avoidance task is the highest-priority task, and the system gives priority to its
operation. Therefore, the increase in A, does not affect the real-time performance of the local
obstacle avoidance task.

5.4.3 Impact of \; on the running time of tasks at all levels

The distribution parameter of mission arrival probability of the obstacle avoidance and
path planning tasks are A;=0.2, A,=0.4, and the number of schedulable cores is N=1. The
experiment records the ratio of the average running time of all levels of tasks with different
sizes of A; to the individual running. The result is shown in Figure 6(c).

The increase in A; means that the number of entertainment tasks reached per unit time
increases. Because the priority of the obstacle avoidance and path planning tasks is higher
than that of the entertainment task, the running time of both is not affected by the change
inA;.

Generally, in the preemptive real-time system with task priority, the change in the task
arrival probability of a single subtask affects all subtasks whose priority is less than or equal
to that task, and the lower the subtask priority is, the greater the performance degradation
is. On the contrary, the subtasks with higher priority are almost unaffected.

5.5 Impact of hardware platform performance on real-time applications

From the experiment presented in Section 5.4, we know that when the task probability
distribution parameter \ increases, the average time between arrivals of two sequential tasks
decreases, and the average running time of the corresponding tasks increases. When 2
increases to a certain value, a task may not be completed on time owing to excessive
releases. In this case, it is necessary to consider replacing hardware devices with
higher-performance devices to ensure the reliability of the system.

To study the impact of hardware platform performance on the task running time of
preemptive real-time systems, we considered the lowest priority, that is, the entertainment
task with the most apparent time change as the task under study, and conduct comparative
experiments on three hardware platforms with different performance, PC, UP Board(UP), UP
Squared(UP2). First, the independent running time of each subtask on the three platforms is
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used as the performance reference of the platform, and the results are shown in Table 3.

Table 3 Individual running time of each task under different hardware platforms

Task Names
Platforms
Local obstacle avoidance Gilobal path planning Entertainment
PC 35.1ms 0.24s 1.26s
UP Squared 94.2ms 0.50s 1.91s
UP Board 240.6ms 1.02s 3.20s

Taking into account the respective priorities of the tasks, we set the performance weights
of the three types of tasks to local obstacle avoidance: global path planning: entertainment
= 3: 2. 1, and the comprehensive performance ratio of the three platforms is calculated as
PC: UP2: UP = 5.2: 2.3: 1.

Second, to analyze the performance differences of the preemptive real-time system on the
three hardware platforms, the following experimental configurations are adopted: fixed local
obstacle avoidance tasks and path planning tasks. The task arrival probability distribution
parameters are A;=0.3 and 2,=0.1, and the the number of schedulable cores is N = 1, The
average running times of the first 200 cycles of entertainment tasks under different \; on the
three platforms are recorded.

From Figure 6(d), we found that under the same task probability distribution, the running
time of entertainment tasks on different hardware platforms are different, but they all
approximately conform to the law of exponential change. We try to fit the three curves with
the exponential regression equation model: Y=ae™+c and the fitting method adopts the
robust least-squares fitting to minimize the absolute residual. Then, the fitting results are:
Ypc=0.042€"%+1.46,Y p,=0.042e12°>*+2.62, and Y;,=0.095e*'*+4.96. The R-square values of the
three fitting curves are calculated as Rspc=0.9994, Rsy»,=0.9946, Rs;»=0.9913; as these are all
close to 1, the fitting effect is good.

Using the above fitting curve, we can evaluate the applicable scope of different hardware
platforms. When the running time of our task is required to be fixed, calculate the range of

A; through the inverse function x= In( —tc))—lna of Y= ae"+ c. For example, when the

entertainment task requires the average running time not to exceed 20s, the maximum A2;
corresponding to the three platforms is calculated: A;c=0.70, A3p=0.40, 23,=0.16 . In
scenarios where entertainment tasks are sparse, such as once every 10s on average, the three
platforms can meet the real-time requirements of entertainment tasks. If it happens every 2s
on average, then only the PC can meet its real-time requirements.

Figure 6 (e) analyzes the relationship between real-time requirements for entertainment
tasks and hardware performance requirements. With the increase of task intensity, the
number of tasks queued for processing gradually increases, and the improvement of
hardware performance alone will become increasingly unable to meet the real-time
requirements of system tasks.

6 Conclusion

Currently, the widely used time sequence analysis methods cannot analyze the time
changes caused by preemption among subtasks in preemptive real-time applications such as
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autonomous driving, and thus cannot effectively evaluate the real-time performance of edge
platforms running real-time applications. In this study, by setting the priority of each subtask
in a real-time system, the running process of the application is transformed into three parts,
which are the task arrival, queue waiting, and scheduling service in the queuing model, and a
real-time application based on a queuing theory and preemptive scheduling strategy is
established. Three commonly used subtasks in an automatic driving system are used as test
tasks, and the time fluctuations of the three subtasks in the real software and hardware
environment are tested; the following conclusions are obtained.

1) The real-time system with task preemption priority can better meet the real-time
requirements of higher-priority tasks. However, for tasks with lower priority, its performance
may not be as good as that of the general time-sharing system.

2) By increasing the number of schedulable cores in the real-time system, the real-time
performance of tasks at all levels can be effectively improved, and the lower the priority, the
more evident is the improvement effect.

3) The change in the arrival probability distribution of a single subtask affects the running
time of all subtasks with a lower priority, and the lower the task priority, the greater the time
change.

4) The improvement in hardware platform performance can improve the real-time
performance of tasks to a certain extent. However, when the intensity of tasks increases, the
improvement in hardware performance cannot meet the real-time requirements of the
system.
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