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ABSTRACT

Prediction of the traffic load of cellular networks is important for network planning, load
balancing, and operational optimization. In this paper, a comparative study of cellular traffic load
prediction models based on deep learning is performed and a prediction method built on a
multi-channel Gated Recurrent Unit (GRU) model is proposed. The proposed method uses
multiple channels to extract the daily and weekly variation feature as well as the variation
feature of the peak period of the BS load and can be used to provide 24-hour ahead predictions.
Experimental results obtained from real dataset show that the proposed multi-channel model
can effectively capture the temporal-variations of BS load and reduce the prediction error.
Compared with conventional prediction algorithms such as Convolutional Neural Network
(CNN), Long Short-Term Memory network, GRU and combination of CNN and GRU (CNN-GRU),
the proposed model can achieve better prediction accuracies.
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1 INTRODUCTION

The fast development of cellular networks has posed significant challenges in network
management and operational optimization. Conventional business analysis approaches
based on mathematical models and human experts cannot catch up with the speed of fast
evolution of modern cellular networks. Data-driven approaches have thus gained more and
more attention from both academia and industry. For cellular networks, accurate predictions
of network load, e.g., the throughput of Base Stations (BSs) or the number of active calls, are
helpful for network planning, load balancing and energy saving optimization (Xu et al., 2016).
For instance, Long Short-Term Memory (LSTM) network combined with historical BS load da-
ta has been used to forecast the BS load, based on which energy saving strategies have been
developed for 5G networks (Wang, 2021). However, accurate prediction of the load of cellu-
lar BSs is challenging due to the randomness of user behavior, the influences of seasonalities
and special events and the existence of diverse types of BSs.

Generally, the load of cellular BSs changes over time. Hence, the historical load of a BS can
be considered as a time series. In this regard, the prediction of BS load can be viewed as a
time-series forecasting problem, for which there are many classical models including such as
linear regression (Moghaddas-Tafreshi & Farhadi, 2008), autoregressive Integrated Moving
Average model (ARIMA) (Wei & Zhen-gang, 2009; Shu et al., 2003), exponential smoothing
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(Song et al., 2005), and multiple linear regression. However, classical models are often limited
to solve linear problems, thus may not be adequate for the BS load prediction. As an alterna-
tive and promising route, deep learning (DL) models can deal with non-linear problems and
hence can be used to perform the BS load predictions.

For DL based time-series prediction, choosing an appropriate neural network structure is
crucial since different models are suitable for different types of data. For time-series predic-
tion, existing works have made different attempts that have used various DL models. In
(Liang et al., 2019), a Convolutional Neural Network (CNN)-based mobile traffic prediction
method was developed to predict the mobile traffic of BSs deployed along highways. Again
based on CNN, an ultra-shortterm wind power probabilistic prediction model was proposed
in (H.-z. Wang et al,, 2017), and its prediction accuracy was demonstrated with real dataset.
In (Kong et al., 2019), a load forecasting framework based on LSTM recurrent neural net-
works was developed to predict household power consumption. The LSTM based framework
was thoroughly tested against multiple benchmarking schemes including k-Nearest Neigh-
bor (Zhang et al,, 2016), extreme learning machine (Zhang et al., 2013) and a sophisticated
input selection scheme combined with a hybrid forecasting framework (Ghofrani et al., 2015).
It turns out that the LSTM framework usually achieved the best prediction accuracy in the
short-term forecast of household energy consumption. In (Duan et al., 2018), LSTM is com-
bined with seasonal and trend decomposition to predict the traffic loads of BSs. Reference
(Zhang et al., 2017) proposed to first decompose the original time series and then train Gat-
ed Recurrent Unit (GRU) networks to predict the decomposed subsequences, from which a
prediction of the overall sequence can be produced. In (Sajjad et al., 2020), a CNN-GRU en-
ergy prediction model based on hybrid sequential learning was proposed to obtain energy
predictions. The numerical results there demonstrate that the method has better accuracy
than CNN, LSTM and combination of CNN and LSTM (CNN-LSTM). CNN and LSTM were also
combined to construct a neural network for fault prediction (Zheng et al., 2019), where mul-
tiple features were used to improve the accuracy and reliability of the predictions. In (Huang
et al., 2017) , Recurrent Neural Network (RNN), three-dimensional CNN and the combination
of CNN and RNN (CNN-RNN) for traffic load prediction were compared, where the numeri-
cal results obtained from the dataset provided by Telecom Italia show that CNN-RNN had
the best prediction performance. Furthermore, in (Lin et al, 2021), a multi-channel input
model combined with attention mechanism was used to capture the temporal characteristics
of BS traffic data. While there has already been extensive effort devoted to developing neu-
ral-network based methods for time-series predictions, using a single universal model for the
prediction of different types of time series is still challenging.

In this paper, we perform a comparative study on DL-based cellular traffic predictions and
propose a new DL model that improves the GRU model by utilizing multiple channels to
capture the complicated characteristics of BS traffic load. The proposed model can be
trained to learn the characteristics of different types of BS traffic patterns at the same time,
thus serves as a universal predictor for BS traffic load in cellular networks. The model is used
to provide 24-hour ahead predictions, i.e., prediction the traffic load of a BS in the next 24
hours. The proposed model is compared with several commonly adopted DL models and its
performance advantages are demonstrated using dataset obtained in real cellular networks.
The contributions of this work are summarized as follows.

1. We propose an improved GRU model that utilizes multiple channels to extract the daily
and weekly variation features as well as the variation feature of the BS load in peak time. The
proposed model shows good universality for different types of time-series.
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2. We conduct a systematic evaluation of the performance of the proposed model, with
comparisons to commonly adopted DL models including CNN, LSTM, GRU, CNN-GRU. The
performance advantages of the proposed model are demonstrated using real dataset.

2 Description of the Dataset and Preprocessing

The BS load data used to train and test the proposed model to be detailed is the counter
values of 'pmRrcConnLevSum’, a BS counter that reflects the total number of active Radio
Resource Control (RRC) connection attempts (Li et al., 2020) to a BS, collected by a fourth
generation long term evolution (4G-LTE) service provider from 15/01/2018 to 15/11/2018.
The counter was collected once per hour at each BS, thus each value reflects the number of
RRC connection attempts in an hour made to the corresponding BS. Preliminary inspections
show that most of the time-series exhibit daily/weekly periodicity, as expected. However,
abrupt changes, trend (e.g., increasing trend) and irregular daily variations are also common
on top of the daily/weekly pattern.

Figure 1 plots four representative examples of the data, obtained from four different BSs.
In this work, we categorize the original time-series of all BSs into four groups to match the
characteristics shown in Figure 1 (a)-(d), and then randomly select five BSs from each group
to make a dataset of 20 time-series. The dataset is then divided into three parts according to
the time, with the ratio 6:2:2 to form the training (60%), validation (20%) and test (20%)
dataset. Model training and evaluation are performed using this dataset.
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Figure 1 An illustration of four representative types of the counter data time-series with:
(a) daily and weekly periodicity, (b) abrupt changes, (c) trend (increasing) and (d) irregular
variations.
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2.1 Data Processing

Denote a complete time-series across the training, validation and testing period as X,,,=
(X™. X" X5™... X,™} , where n is the total number of time instances (the number of hours in
the current dataset). The following two steps are performed for missing value imputation
and data transformation to enhance the integrity of the data.

1. Missing value imputation: Missing values are presented as ‘Null' in X, . Fortunately, the
original data is of high quality and the percentage of Null values is low (0.06%). Suppose
sample , X is 'Null’, then it is replaced by X/™ < ( X™+X,™ ) /2, where X/ and X,™ are the
nearest valid sample before (i <j ) and after (k >j) sample X, respectively. In case that j is
the first or the last sample of the time series, it is replaced by the nearest valid sample.
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Figure 2 An illustration on the impact of public holidays on the BS load.

2. Logarithm data transformation: As a further step to pre-process the data, we take the
logarithm transformation of the data after imputation: X",,=log X,,, where X", represents the
data after transformation. This step is to reduce the variation order to facilitate the training
of the prediction model.

2.2 Feature Selection

As illustrated in Figure 1, the counter value generally varies periodically every day and
every week. Additionally, as expected, public holidays also have a significant impact on the
value of the data. For instance, as shown in Figure 2, the counter value on a Friday which is a
public holiday is different from that of a normal Friday and behaves similarly to a weekend.
Since the dataset only covers a period of about 11 months and the number of public
holidays (non-weekend holidays) is relatively small, it is difficult for the DL model to learn the
characteristics of non-weekend holidays and give accurate traffic load predictions. Therefore,
we include the indicator of working day and the indicator of holiday as additional input to
the DL models. Furthermore, we also add the indicator of holiday for the predicted day as an
input feature.

3 DL Baseline Models for BS Load Prediction

In this section, we give a brief review of several classical DL models that will be used as
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baselines in cellular BS load prediction, including CNN, LSTM, GRU and CNN-GRU. Denote
the BS load at time instance t as x;, the corresponding encoded weekday as w; € {1,2,...,7},
the indicator of working days as iw; € {0,1}, the indicator of public holiday as ih. € {0,1}, and
the indicator whether the predicted values are on a public holiday as fw, € {0,1}. With the
notation described, the input features for time instance t can be represented by vector X.=[ x;
, W, iw,, ih:, fw; ], which is of dimension N x 1 and N = 5. Then the BS load prediction
problem can be formulated as using a set of T input samples X,= { X/, ..., X, Xoo, X} tO
predict m BS load values beyond time instance t i.e, y= { x./, X2, -\ Xum} » Where m =24
for the 24-hour ahead predictions.

3.1 Convolution Neural Network (CNN) -Based Model

Figure 3 presents the CNN model used for predicting the BS load, which consists of two
convolutional layers.
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Figure 3 Architecture of the CNN prediction model.

The input is x and is of dimension T x N, while the shape of the convolution kernel is S x
N . Here, S represents the size of the convolution kernel. After two convolution and pooling
operations, the predicted BS load y,= { x., X, ..., X..} are generated through the fully
connected layer.

3.2 Long Short-Term Memory (LSTM) -Based Model

LSTM networks are extensions of recurrent neural networks that are commonly used for
timeseries predictions. Each LSTM cell has an input gate, and an forget gate to control the
internal information flow:

fe = U(Wf [he—gxe] + bf)
ip = o(W; - [he—1, x¢] + by)

Et = tan h(Wc ‘ [ht—li xt] + bC)
Co=fr*Cq +ip %G
0 = O'(VVO [ht_p xt] + bo)
h; = o; * tanh (C;)

(Y
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where o denotes the logistic sigmoid function, x represents the input vector at the current
moment, h, is the hidden state, W is the weight matrices (e.g., Wi represents the input gate
weight matrix) and b is the bias vectors (e.g.,b; represents the input gate bias vector) for the
three gates. Figure 4 shows the structure of an LSTM cell.

In this work, we use a two-layer LSTM network for BS load prediction. The overall
architecture of the LSTM network is shown in Figure 5. With this network, the input vector
X.1.1 Of the first time instance is passed through the first LSTM cell in the first LSTM layer to
obtain the output state vector h%r.; , which, together with the input vector X.r., at the next
moment, form the input into the next LSTM cell in the first layer to generate h'.r.,; this
process continues until the last input (the latest time instance) is completed.

The output of the first LSTM layer is fed into the second LSTM layer as the input and
generates h%... k={T,T-1,...,1}. The output state vector h*; generated by the last LSTM-cell
of the second LSTM layer is finally flattened into a fully connected layer to obtain the
predictions y={ X1, X2, «o) Xem} -
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Figure 4 Structure of an LSTM CELL.
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Figure 5 Structure of the LSTM-based prediction model.

3.3 Gated Recurrent Unit (GRU) -Based Model

The principle of using GRU networks to predict the BS load is similar to that of the LSTM
networks. Compared with LSTM, GRU combines the internal state vector and output vector
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into one state vector, and uses a reset gate and update gate to replace the LSTM gates. GRU
can achieve similar prediction accuracies as LSTM in sequence learning. However, it is easier
to train and has lower computational complexities. A GRU cell has the following internal
information flow:

e = (W - [he—1, x¢] + by)

}Nlt = tan h(Wy, - [ry * he—g, ;] + by)
2= (W, - [he 1, %] +b,) @

he=1—2z)*hey +z.%h

Figure 6 Structure of a GRU CELL.

where o denotes the logistic sigmoid function, x represents the input vector at the
current moment, h; is the hidden state, W is the weight matrices and b the bias vectors.

Figure 7 presents the GRU model used for predicting the BS load. Similar to the LSTM
network training process, the features extracted from the historical data are transformed to
the last GRU cell through two layers of GRU, and the outputs of the last GRU Cell at the
second layer are flattened and then fed into the fully layer to obtain the final predictions.
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Figure 7 The structure of the GRU prediction model
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3.4 CNN-GRU Based Model

The CNN-GRU model combines the effectiveness of CNN in extracting features and the
low computational complexity and powerful learning of GRU in time series learning.
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Figure 8 Structure of the CNN-GRU prediction model.

In CNN-GRU, a CNN network is first used to extract the features of the input sequence
{Xora o Xoro, Xo, Xou} by performing two convolutional and pooling operations. Then the
extracted features are put into a GRU network for training, and the final feature extraction
results are obtained after the two-layer GRU network. The outputs of the GRU network are
flattened and passed through a fully connected layer to obtain the output y= { x., X, ...,
X.m} . Figure 8 depicts the structure for CNN-GRU network we used for BS load prediction.

4 The proposed model: Multi—channel GRU

Preliminary investigations show that the models reviewed above, which mainly use the
original historical data as the input feature, do not predict the peak BS load accurately. To
solve this problem, in this section, we propose a multi-channel GRU model. The proposed
model uses three channels to extract the daily and weekly fluctuation characteristics of the
BS load, as well as the characteristics of the peak load to enhance the prediction accuracy. It
is noted that the input feature used to extract the characteristics of the peak load is in fact
the historical BS load during peak time, which is part of the input feature used for learning
the daily fluctuation pattern. The repeated use of the historical data of this period is to
augment the GRU model such that the BS load prediction can better capture the significant
fluctuations of the daily peak values.

The input of the first channel is the historical data of consecutive days, defined as follows:

Xa = (Xt—24*Td+1r ty Xt—24*Td+24-r
Kt—2ae(Tyg=1)+1 """ Kt—244(T g—1) 424 3)
o Xe_ga41 5 Xe—1),

where T, represents the number of days. In this work, Ty = 7, thus X; contains 7 days of
data.
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The input of the second channel contains historical data from the same weekday from the
predicted day:

X £ Xe—2ax74Tyr 10" s Xt 242751 4240
Kt 28x76(Ty=1) 410 " s K= 28574(Tyy=1)+ 247 4)
X gae7it Xi24n7424),

where T, is the number of weeks considered. In this work, T,, =3 hence historical data from
the 3 same weekdays of the weeks before the prediction time t is used.
The input of the third channel contains data between hour T, and T. on each of the past T,
days:
Xp = (Xt—24*Tr+1+T5' :Xt—24*Tr+1+Te'
Xt 20T +14T " Kt—245(T— 1)+ 14T 5)

Xt—24+1+T5: T Xt—24+1+Te):

Here T;= 7 and T. =16 when performing the 24-hour ahead prediction.

Figure 9 presents the architecture of the proposed multi-channel GRU network. Each
channel is in fact a two-layer GRU network separated from each other. The input sequences
are fed into the corresponding models. The outputs of the three GRU networks are then
concatenated and passed through a fully connected layer to obtain the BS load predictions.
In this way, the final results are a weighted combination of forecasts made according to the
daily pattern, weekly pattern and the peak period of each day.
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Figure 9 The architecture of the proposed multi-channel GRU prediction model.

5 Numerical Results

In this section, we evaluate the performance of the proposed multi-channel GRU model for
BS load prediction. The proposed model is compared to the baseline schemes described in
Section 3, including CNN, LSTM, GRU and CNN-GRU. Table 1 presents the hyper parameters
of the models considered as well as the parameters for training the models.
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Table 1 The hyper parameters of the models considered as well as the parameters for
training the models.

Parameters CNN LSTM GRU CNN-GRU Multi-channel GRU
CNN GRU channell | channel2 | channel3

Depth 2 2 2 2 2 2 2 2
Input Length 168 168 168 168 40 168 72 210
Hidden neural None 100 100 None 100 100 50 100
Kernel size 64,32 None None 64,32 None None None None
Dropout rate None 0.2 0.2 None 0.2 0.2 0.2 0.2
Learning rate 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Loss function MSE MSE MSE MSE MSE MSE MSE MSE
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Table 2 Performance comparison of different prediction algorithms for multi-output
prediction of four types of base station data.

Metrics CNN LSTM GRU CNN-GRU Multi-channel GRU
MAPE 17.12% 16.79% 16.20% 17.39% 15.49%
NMAPE 14.69% 15.18% 14.38% 15.88% 13.49%

R2 0.7974 0.7830 0.8025 0.7657 0.8179

To evaluate the prediction accuracy of the proposed model and the baselines, the Mean
Absolute Percentage Error (MAPE), Normalized MAPE (NMAPE) (Ahmed et al., 2020) and the
R-square (R2) are adopted as the performance metrics. It is noted that absolute error metrics
such as the mean absolute error are not adopted since the BS load varies significantly across
different BSs, thus the absolute metrics cannot accurately reflect the performance of the
prediction models.

Denote y; as the true BS load and § as the corresponding prediction, then the MAPE can
be calculated as:

1009 9 — ¥
mapg = 220% amedl (6)
n | Vi |
i=1
The NMAPE can be calculated as:
n
100% Vi — Vi
NMAPE = — E i =i, (7)
n y
i=1

- 1
where ¥V = ;Zznzo Yi is the average BS load. R2 is the coefficient of determination, which
reflects the proportion of the total variance of the dependent variable that the independent
variable can explain through the regressed relationship, i.e., the trained DL model. It can be

calculated as:
i, =92 8
R2 = 1— Lm0 ®)

Z:Ll(yi—?)z

In the following, we present the numerical results obtained for the 24-hour ahead
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predictions.

Figure 10(a)-(d) present the predicted BS load series obtained from the proposed model
and the baselines for the four different types explained in Figure 1, respectively. As can be
seen from the figure, all the DL models considered perform reasonably well in capturing the
differences between working days and non-working days, thus provide good prediction
accuracies. The proposed model provides visually more accurate predictions on the peak BS
load than the baselines.

Moreover, for the more challenging task of predicting the BS load in the presence of
abrupt changes, as illustrated in Figure 10(b), the proposed multi-channel GRU exhibits the
best adaptability to the changes. As can be seen from Figure 10(b), all the DL models have
significant prediction errors when the change occur, which is inevitable. However, after the
change, the multi-channel GRU quickly captures the new characteristics of the BS load and
provide more accurate predictions.

For trending data as in Figure 10(c) (see Figure 1(c) for the complete time-series), LSTM
and GRU models fail to give accurate predictions of the BS load on weekends, due to the
orders of magnitude difference between the peak loads of working days and non-working
days. The prediction errors of CNN are also significant on weekend. As a comparison, the
proposed model provides consistently accurate predictions on both working and
non-working days.
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Figure 10 A Comparison of predicted and valid values for all models in Multi-Output
Prediction.
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Table 2 presents the overall performance of the proposed model and the baselines. As can
be seen, for all the three metrics considered, the proposed multi-channel GRU model
performs the best. Compared to CNN, LSTM, GRU and CNN-GRU, the proposed model
reduces the MAPE by 9.52%, 7.74%, 4.38%, and 10.93%, and reduces the NMAPE by 8.17%,
11.13%, 6.45%, and 15.05%, respectively.

Figure 11(a)-(d) presents the cumulative distribution function (CDF) of NMAPE of all the
tested instances (each time instance corresponds to a 24-hour prediction) for the four
different types of time-series. As can be seen, the performance improvement from the
proposed model mainly comes from the first three types of time-series. For the last type
with irregular fluctuations which is more challenging to predict, the proposed model
performs similarly to the baselines.
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Figure 11 Cumulative Distribution Function (CDF) of NMAPE of the predictions.(a) daily and
weekly periodicity, (b) abrupt changes, (c) trend (increasing) and (d) irregular variations.

6 CONCLUSIONS

In this work, a multi-channel GRU model has been proposed for the prediction of the
traffic load in cellular networks. The proposed model adopts three GRU networks to learn
the daily and weekly pattern of the traffic load as well as the fluctuation characteristics of the
load in peak times. A comprehensive comparison to popular DL based models, including
CNN, LSTM, GRU and CNN-GRU has been performed with real dataset collected by a LTE
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mobile service provider. Numerical results demonstrate 6% to 15% improvement over CNN,
LSTM, GRU and CNN-GRU, when performing the 24-hour ahead traffic load predictions for
individual BSs. Future extensions of the current work may include the utilization of data from
adjacent BSs to learn the spatiotemporal characteristics of the BS load so as to enhance the
prediction accuracies. The prediction accuracy may also be improved by using multiple
counters that are partially correlated with each other.
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