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ABSTRACT

Data science is a rapidly growing academic field with significant implications for all conventional
scientific studies. However, most relevant studies have been limited to one or several facets of
data science from a specific application domain perspective and less to discuss its theoretical
framework. Data science is unique in that its research goals, perspectives, and body of
knowledge are distinct from other sciences. The core theories of data science are the DIKW
pyramid, data-intensive scientific discovery, data science life cycle, data wrangling or munging,
big data analytics, data management, and governance, data products DevOps, and big data
visualization. Six main trends characterize the recent theoretical studies on data science are: (1)
the growing significance of DataOps, (2) the rise of citizen data scientists, (3) enabling
augmented data science, (4) integrating data warehouse with data lake, (5) diversity of
domain-specific data science, and (6) implementing data stories as data products. Further
development of data science should prioritize four ways to turn challenges into opportunities:
(1) accelerating theoretical studies of data science, (2) the trade-off between explainability and
performance, (3) achieving data ethics, privacy and trust, and (4) aligning academic curricula
with industrial needs.
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1 INTRODUCTION

Data science is gaining momentum across a range of disciplines. The term "data science"
can be traced back to 1974 when the computer scientist Peter Naur coined and defined it as
the science of dealing with data (Naur, 1974) , and then data science first occurred as a sci-
entific idea in computer science. In 2001, William S. Cleveland, a statistician, proposed an ac-
tion plan for expanding the technical areas of the field of statistics (Cleveland, 2001) , and
statistics was the second discipline that delineated data science. Hence, computer science
and statistics are the two main theoretical foundations of data science. In 2010, Drew Con-
way, the founder of Alluvium, published a data science Venn diagram and first discussed the
interdisciplinary of data science. He argued that data science is located at the intersection of
hacking skills, math and statistics knowledge, and substantive expertise. Further, this Venn
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diagram has many variations (Ullman, 2020; Taylor, 2016). Currently, data science is a hot
topic in a variety of disciplines and has nurtured new data science branches in traditional sci-
ences, such as Geography (Singleton & Arribas-Bel, 2021 ), Materials Science (Kalidindi & De
Graef, 2015), Health Science (Peek & Rodrigues, 2018), Business Data Science (Provost &
Fawcett, 2013), Environmental Science ( Gibert et al., 2018), Surgery( Maier-Hein et al., 2017),
and Cybersecurity( Sarker et al., 2020; Zhang et al., 2021).

However, most related studies are dedicated to discussing one or several practical facets of
data science from their distinct domain perspective and less to discussing its theoretical
framework. This study carries out an in-depth analysis of the data science theoretical frame-
work based on comprehensive literature research and presents trends, perspectives, and
prospects of data science. This paper is organized as follows: Section 2 discusses the main
research motivations, unique thinking patterns, and the body of knowledge. Section 3 de-
scribes the core theories of data science and their recent progress, and Section 4 proposes
the emerging trends of data science studies. Further, Section 5 provides some recommenda-
tions for the academic research or industrial application of data science. Finally, Section 6
presents the conclusion.

2 DATA SCIENCE

Data science is a new cross-disciplinary science dealing with big data drawing on machine
learning (ML) , statistics, and data visualization as its primary theoretical basis. Data science
concludes a set of fundamental principles that guide the extraction of information and
knowledge from data. Data science focuses on processing, computing, managing, analyzing
big data, and providing data products. Data science is novel in that its research goals, per-
spectives, and body of knowledge are distinct from the traditional sciences.

2.1 The Essential Research Goal of Data Science

Data science aims to accelerate the inter-transformation between materials, energy, and
data, notably to reduce the consumption of materials and energy or improve the effective-
ness and efficiency of exploiting them by taking advantage of data. Further, the essential re-
search goals of data science studies can be categorized into the following subjects:

1. To reveal the underlying mechanism of big data;

2. To turn data into knowledge, understandings, or wisdom;

3. To gain insights from big data;

4. To convert big data into business value;

5. To enable data-driven decision-making or data-driven decision support;

6. To implement data product development and operations (data product DevOps) ;

7. To cultivate and maintain big data ecosystems.

2.2 The Unique Research Perspective of Data Science

With the raising of the big data era, our main concerns for data have undergone a signifi-
cant shift from "what can we do for data?" to "what can data do for us?" (see Figure 1). This
shift (or diversification) in research perspectives is the main difference between data science
and traditional data-related studies. Many new terms have been coined in big data era, such
as "data-intensive scientific discovery," "data-driven decision-making," "data-centric architec-
ture," and "data jiu-jitsu", most of them are in line with this new shift in research perspec-
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tives.

The concern of traditional data-related theories concentrates on "what can I do for data?"
Traditional data engineering, data structure, database, data warehouse, data mining, and
other data-related theories focus on cleaning, labeling, extracting, transforming, and loading
data. Traditional theories place a high value on ways to manually process data to make sure
they are more valuable or ready for the subsequent process and future usage. However, data
science conforms to the alternative research perspective of "what can data do for me?" The
main concerns of data science include:

e What automatic decision-making or decision support can be enabled by taking advan-

tage of big data?

e Which business opportunities or new target markets can be identified by harvesting big

data?

e What are the uncertainties that big data can reduce?

e What predictive or prescriptive analysis can be conducted based on big data?

e Are there any potential, valuable, and usable hidden patterns or models within big data?

In short, we deal with the relationship between humans and data from two distinct per-
spectives "What can I do for data?" and "What can data do for me?" in the era of big data.
The latter is emphasized in data science.

Figure 1 New and unique perspective of data science

2.3 Data Science Body of Knowledge

The body of knowledge for data science involves its theoretical foundations, main branch-
es, domain expertise, as well as issues from humanities and social sciences (see Figure 2) .
Data science is enabled by statistics, ML, and data visualization, and these three distinct dis-
ciplines are the theoretical foundation of data science. The research topics of data science
are categorized into six main branches: fundamental concepts and principles of data science,
data wrangling, data computing, data management, data analysis, and data products De-
vOps. Also, placing data science theories into practice is commonly domain-dependent; do-
main expertise is essential for these applications. The data science theory involves humanities
and social science issues, especially big data ethics, privacy, and trust.
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Figure 2 Data science body of knowledge

1. Fundamental concepts and principles: the basic theories of data science include its core
concepts, research motivations, research areas, life cycle, main principles, typical applica-
tions, and project management. Note that the basic theories are distinct from the theo-
retical basis. The former is within the research boundary of data science, while the latter
is outside that scope.

2. Data wrangling: Data wrangling (or data munging) is a novel term coined for data sci-
ence. "Data wrangling" refers to a series of data preprocessing activities to enhance data
quality, reduce the complexity of data computing, and improve the accuracy of data
processing. Data science projects must perform a series of preprocessing activities on
raw data, including data audit, cleaning, ETL, integration, reduction, and labeling. Unlike
traditional data preprocessing, data wrangling (or data munging) in data science high-
lights value-added processes through integrating the creative design, critical thinking,
and curiosity of data scientists into data preprocessing.

3. Data computing: In data science, computing models have significantly shifted from tra-
ditional computing technologies such as centralized computing, distributed computing,
and grid computing to emerging new technologies like cloud computing, edge comput-
ing, and mobile computing. Examples of big data computing technologies are GFS,
BigTable, MapReduce, Spark, and YARN. Changes in data computing theories involve
the primary bottlenecks, research motivations, main contradictions, and thinking pat-
terns for data computing, which will be discussed later.

4. Data management: Big data needs to be effectively managed to conduct data analysis,
data reuse, and long-term storage. Also, data science needs relational databases and e-
merging big data management technologies such as NoSQL, NewSQL, and relational
cloud.

5. Data analysis: In data science, data analysis focuses on prescriptive and predictive analy-
sis rather than descriptive or diagnostic. The prescriptive model involves large-scale
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testing and optimization and it is a means of embedding analytics into key processes
(KP) and employee behaviors (Davenport, 2013). Data scientists prefer to choose
open-source tools, which are different from commercial software. Consequently, Python
and R are popular data analysis tools for data scientists.

6. Data products DevOps: "Data product” has a special meaning in data science. Data
products development is a critical research task in data science projects because it rep-
resents a unique research topic that distinguishes data science from other sciences. Un-
like traditional products development, data products development is data-centric, di-
verse, hierarchical, and value-added. Also, data products development capabilities are
the primary source of competitiveness for data scientists. Therefore, one of the specific
purposes of data science studies is to provide a wide range of data products.

Data science has various domain applications. Representative practical applications by far
are Google Flu Trends (Ginsberg et al, 2009) , Target pregnancy prediction (Hill, 2012) ,
MetroMile insurance, IBM Workbench, Databircks, London Olympics data news, Google
Translate, and the Climate FieldView.

3 CORE THEORIES

The core theories of data science to date are the DIKW pyramid, data-intensive scientific
discovery, data science life cycle, data wrangling or munging, big data analytics, data man-
agement, data governance, data products development, and big data visualization.

3.1 The DIKW Pyramid

The DIKW pyramid is a hieratical framework that describes functional relationships be-
tween data, information, knowledge, and wisdom. Data are symbols that represent the prop-
erties of objects and events. Information consists of processed data; data are processed to
improve their usefulness. Information is contained in descriptions, and in answers to ques-
tions that begin with such words as "who," "what,” "when," "where," and "how many." In-
structions and answers convey knowledge to how-to questions. Wisdom deals with values
and involves the exercise of judgment (Ackoff, 1989) .

The DIKW pyramid is a widely discussed topic in data science because the pyramid repre-
sents the underlying motivation for data science studies: converting big data into big wis-
dom. For instance, John D. Kelleher and Brendan Tierney (2018) proposed the data science
pyramid based on the DIKW pyramid to show a hierarchy of data science activities from data
capture and generation to decision support using data-driven models deployed in the busi-
ness context.

However, there is a notable difference between the discussion on the DIKW pyramid from
a data science perspective and the conventional one that stems from the fact. The former
seeks an integrated solution for converting data into information, knowledge, or wisdom in-
stead of isolated solutions (see Figure 3) . Datafication refers to recording the real world in-
to data; data wrangling is employed to turn messy data into tidy data; data analytics are
used to acquire information from data; and data insights are applied to obtain knowledge
from data directly. Data products DevOps are operationalized by converting data into wis-
dom. Data scientists tend to regard information, knowledge, and wisdom respectively as an-
alyzed data, valuable insights, and the capability to convert data into products.
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Figure 3 DIKW pyramid from data science perspectives

3.2 Data-Intensive Scientific Discovery

Data-intensive scientific discovery is the unique thinking paradigm of data science in that it
is distinct from conventional data-related studies, including data engineering, data analysis,
data retrieval, and data preprocessing. Jim Gray (2009) proposed that our society is turning
to the fourth scientific paradigm, namely the data-intensive scientific discovery paradigm, a
new expansion of established scientific methods (Tansley & Tolle, 2009) . However, conven-
tional data-related studies conform to alternative research paradigms, such as empirical evi-
dence, scientific theory, and computational science.

Introducing the novel research paradigm into data science enables it to obtain previously
unknown patterns, insights, and knowledge from big data. Data science has become one of
the hot research topics in traditional data-related studies. Zhu and Xiong (2015) argued
that data researchers tended to study data in cyberspace, which is different from natural sci-
ence and social science. Chen and Zhang (2014) discussed applications and tools to address
big data challenges and suggested some principles for designing effective data systems. Cao
(2017) discussed the significance of data DNA and conducted a comprehensive investiga-
tion of fundamental aspects of data science. Beck (2016) proposed that data scientists were
equipped to seamlessly process, analyze, and communicate in a data-intensive context.

Data science primarily adopts the "data first, hypothesis later or never" approach to deal-
ing with big data. By contrast, the computational sciences tend to employ the "hypothesis
first, data later" approach, i.e., putting forward hypotheses before collecting or analyzing da-
ta. As for the data-intensive paradigm, the researchers first collect data as much as possible
and conduct predictive or prescriptive analysis to identify unknown insights or hidden pat-
terns. Furthermore, data scientists enable enterprises to make data-driven decisions by cap-
turing, mining, and analyzing massive amounts of data and measuring and verifying data
with statistical models or ML algorithms. The introduction of this novel scientific paradigm
motivated a shift from computing-centered thinking toward data-centered thinking.

3.3 Data Science Life cycle

The data science life cycle is one of the basic theories of data science and reveals the con-
ceptional workflow of data science projects. Although it is an accepted convention that the
life cycle model is the typical means to describe data science projects, researchers have not
yet reached a consensus on the stages of the data science life cycle. Larson and Chang
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(2016) contrast business intelligence life cycle with data science life cycle in terms of scope,
data acquisition/discovery, analyze/visualize, model/design/development, validation, deploy-
ment, as well as support/feedback. Boehm et al. (2020) proposed an open-source ML sys-
tem for the end-to-end data science life cycle, involving such activities as data integration,
cleaning, and preparation, over local, distributed, and federated model training, debugging,
and serving. Ho and Beyan (2020) described phases in the data science life cycle, including
data ingestion, scrubbing, visualization, modeling, and analysis, and further discussed com-
mon biases at each stage. Song and Zhu (2017) proposed that the data science life cycle
has eight main stages: (1) business understanding, (2) data understanding, (3) data
preparation, (4) model planning, (5) model building, (6) evaluation, (7) deployment, and
(8) review and monitoring. Wang et al. (2021) described a data science life cycle that con-
tained ten distinct stages: (1) requirement gathering and problem formulation, (2) data
acquisition and governance, (3) data readiness, data preprocessing, and data cleaning, (4)
feature engineering, (5) model building and model training, (6) model presentation and
stakeholder verification, (7) model deployment, (8) runtime monitoring, (9) model refine-
ment (post-deployment) , and (10) decision-making and optimization.

Data science projects aim to obtain valuable insights from big data to make better deci-
sions. With the maturity of ML, cloud computing, and artificial intelligence, more jobs are au-
to-completed by machines. However, humans still play an irreplaceable role in data science
projects. While data scientists are responsible for transforming raw data into data products,
domain experts are also required to validate, explain and implement those products. En-
abling man-machine collaborative data science, we propose a new data science life cycle
model with nine steps:

1. business understanding,

2. datafication,

3. data wrangling or munging,
4. data analysis,
5. data understanding,
6. data insights,
7. visualizing/storytelling/communicating,
8. data products DevOps, and
9. decision-support or automated decision-making (Figure 4) .
Data
Understanding
Detafication [—{ D@ Wianeling L__{ p e oo
or Munging
\\\ Data Insights
S !
“~.] DataProducts Viswlizing/ decision -
DevOpe Storytelling/ > ::m:
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Figure 4 Data science life cycle adapted from O'Neil, Cathy, and Rachel Schutt. Doing data
science: Straight talk from the frontline. " O'Reilly Media, Inc.", 2013.
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3.4 Data Wrangling or Munging

Data wrangling (or data munging) is one of the novel concepts commonly employed by
data scientists since it reflects the shift in the main concerns in data preprocessing. Wickham
(2014) demonstrated how to transform messy data into tidy data using a set of tools with R.
Endel and Piringer (2015) proposed that data wrangling is not only about transforming and
cleaning procedures, and other aspects like data quality, merging of different sources, repro-
ducible processes, and managing data provenance must be considered. Jiang and Kahn
(2020) insisted that data wrangling is a strategy for selecting, managing, and aggregating
datasets to produce a model and story. Azeroual (2020) discussed the main steps for data
wrangling: exploring, structuring, cleaning, enriching, validating, and publishing. Kandel et al.
(2011) used visualization methods such as graphics and charts to identify data quality prob-
lems and data wrangling.

In contrast to conventional data preprocessing, data wrangling is supposed to be a val-
ue-adding process. It concentrates on applying data scientists' creative design skills, critical
thinking, and curiosity to data processing tasks. Data wrangling is a new type of data prepro-
cessing involving data cleansing and tidying. Data cleansing is converting dirty data into
clean data by enhancing data quality. Alternatively, data tidying refers to transforming messy
data into tidy data by reshaping or reformatting data.

Note that data wrangling usually causes information loss or information distortion. Some
valuable information may be lost when transforming unstructured data into structured data,
when it cannot be directly stored in a structured form. Also, it is possible that the original
meaning of the data is distorted when the data are converted from one format into another.
Therefore, data scientists have to find a trade-off between data wrangling and information
loss.

3.5 Big Data Analytics

Big data analytics has been widely discussed and is the most advanced topic in data sci-
ence. A few researchers were under the impression that data science was only a new alterna-
tive name for big data analytics. For instance, Nakamura (2020) regarded big data analytics
as data science. In practice, data science provides broader insights and focuses on what
questions should be asked, while big data analysis emphasizes finding answers to the ques-
tions asked (Nadikattu, 2020) . Big data analytics is one of the stages in a data science life
cycle, and data analysis systems must provide effective mechanisms to design and complete
analysis tasks (Elshawi, 2018) . Tsai et al. (2015) discussed the development of a high-per-
formance big data analytics platform and appropriate mining algorithms in the entire pro-
cess of knowledge discovery in databases. Kambatla et al. (2013) described the application
prospects of big data analytics and suggested that some computing work should be trans-
ferred to the data source itself in the future system. Swan (2013) argued that the Quantified
Self (QS) is a challenge in data science and that big data analytics can provide new insights
into QS and other biological issues.

One of the hottest topics in big data analytics is the development of tools and technolo-
gies for data science projects. There have been some established tools to help data scientists
and data analysts perform tasks related to big data analytics. Most big data analysis projects
adopt Hadoop and Hadoop-related technologies to provide novel solutions. The Apache
Hadoop platform is deemed to be composed of related projects, including HDFS, YARN,
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MapReduce, Pig, Hive, and HBase (Bappalige, 2014) . Also, there is a vast range of compa-
nies devoted to advance technologies for big data analytics. Databricks, for instance, pro-
vides a Spark-based unified analytics engine for large-scale data analytics. Spark is an
open-source cluster computing system based on in-memory computing that aims to make
data analysis faster. Currently, it is one of the most popular technological solutions for big
data analytics.

Studies on big data analytics face the following challenges: difficulty in storing vast vol-
umes of data and lack of professionalized analytics tools. Stephens et al. (2015) proposed
that CPU capacity might not be the bottleneck of future big data analysis; the bottleneck lies
in the input/output hardware that transfers data between storage and processor. Business
applications need real-time big data analytics to implement dynamic auto-decisions, which
require big data analytics tools to process more data in less time.

3.6 Data Management and Data Governance

Data management and data governance represent the management facets of data science.
With big data playing an increasingly important role in governments, enterprises, and institu-
tions, big data management or big data governance is becoming one of the main concerns
of relevant studies.

Typically, data management possesses a broader scope than data governance (see Figure
5). Data management maturity (DMM) lists 25 KPs required for organizational data man-
agement. Further, it categorizes them into six key process areas: (1) data management strat-
egy, (2) data governance, (3) data quality, (4) platform and architecture,(5 )data operations,
and (6) supporting processes. Data governance, as defined by DMM, involves three KPs: (1)
governance management, (2) business glossary, and (3) metadata management. Also, the
standard entitled "Information Technology Services—Governance Part 5: Data Governance
Specification" issued by the China National Information Technology Standardization Network
(Standards China, 2018) defines data management as the collection of activities in which da-
ta resources are acquired, controlled, and promoted value. In that document, "data gover-
nance" refers to the collection of related governance activities, performance, and risk man-
agement in data resources and their applications.

Data } - Aims
Governance ‘ " Policies
Regulations
Guidelines

Data Management

Figure 5 Data governance and data management

Data governance provides the aims, policies, regulations, guidelines, tools, and solutions
for ensuring successful data management activities. Mathur and Purohit (2017) argued that
it is necessary to deal with the main problems of access, metadata, utilization, update, gover-
nance, and reference. Ranjan et al. (2018) designed data management components, includ-
ing data governance, data analysis, and data warehousing from the perspective of the Inter-
net of Things (IoT). Bakken and Koleck (2019) summarized the benefits as well as challenges
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of data governance, data science infrastructure, and data science pipelines from a nursing
perspective.

The DGI Data Governance Framework (2020) proposed by the Data Governance Institute is
adopted as one of the best data governance practices. It is a logical framework for classify-
ing, organizing, and transmitting complex enterprise data. Data governance tasks usually
have three stages:

1. Define or order rules of engagement;

2. Identify the relevant people and administrative bodies, especially the data stakeholders,

a data governance office, and data stewards;
3. Divide and implement specific governance processes ( Thomas, 2020).

3.7 Data Products DevOps

Providing data products is one of the ultimate research motivations of data science. In da-
ta science, data products refer to all products developed based on data. In other words, data
products involve not only products in the form of data but also products that use data to
help users achieve one or some of their goals (Patil, 2012). Data products include datasets,
documents, databases, software, hardware, services, insights, decisions, and their various
combinations.

Developing data products is the hallmark of data science as a distinct new discipline. Data
products typically incorporate six main features (see Figure 6):

(1) providing data-based (fact-based) solutions rather than knowledge-based solutions,

(2) addressing data-intensive problems in preference to computing-intensive tasks,

(3) being driven by data instead of hypothesis,

(4) conforming to data-analytic thinking in place of intuition-based thinking,

(5) adopting data-centered architectures as a substitute for app-centered architectures,

(6) creating value from data in favor of creating data for value. Therefore, data products
are fact-based and are beyond the limits of intuition. Key aspects that define the types of
data products or services include intellectual property rights, licensing terms, and type of
owner (Pantelis & Aija, 2013).

Figure 6 Six main features of data products
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The methodology for developing data products is one of the hot topics in data science
studies. Patil (2012 ) coined a new term "data jujitsu" that refers to the art of converting data
into products. Further, he provided 13 underlying principles of data jujitsu. In the industry,
data products development is a required skill for data scientists and big data analysts. Data
science is located at the intersection of statistics, ML, and domain knowledge (Schutt &
O'Neil, 2013). Li et al.(2019) discussed how engineers and data scientists could effectively
collaborate on new products development in a hybrid team with data-driven features. Online
data products, such as search engines developed by companies such as Yahoo and Google,
could be used as mobile applications, forming the so-called "App Economy" (Davenport &
Kudyba, 2016). To leverage the full potential of data science, user experience analysis should
be included in the design process, and user testing should be part of the project life cycle
(Joshi, 2021). Consequently, A/B testing is adopted as a common tool to evaluate and im-
prove user experience of data products.

3.8 Big Data Visualization

Big data visualization is a fundamental building block of data science in that visualization
is one of the most effective ways to reveal the hidden information behind big data explicitly.
However, big data's diversity brings challenges to traditional data visualization methodolo-
gies since semi-structured and unstructured data are challenging to process (Jin et al,
2015). Real-time scalability and interactive scalability are the main challenges that limit the
presentation of big data, while data reduction and reducing latency are better ways to pre-
sent big data (Agrawal et al., 2015). Ali et al. (2016 ) argued that choosing the dimensions of
data to be visualized, low performance, visual noise, information loss, large image percep-
tion, high rate of image change, and high-performance requirements are substantial chal-
lenges faced for big data visualization tools.

The industry has provided a variety of big data visualization tools, including Tableau, D3 js,
Power BI, Infogram, and Google charts. Big data visualization tools should have new capabil-
ities to handle various data formats, to import/export data or share visualization results with
other tools, to provide collaborative working space, and to improve user experiences.

Visual analytics was proposed in 2004 by a working group at the National Visualization
and Analytics Center (NVAC) (Cook & Thomas, 2005). It aims to combine the flexibility, cre-
ativity, and background knowledge of humans with the vast storage and fast processing
power of computers to gain big data insights to address complex problems. Visual analytics
is a promising field for data visualization in data science studies.

4 EMERGING TRENDS

Six main trends characterize the recent theoretical studies on data science:
. the growing significance of DataOps,

. the rise of citizen data scientists,

. enabling augmented data science,

. integrating data warehouse with data lake,

. diversity of domain-specific data science, and

. implementing data stories as data products.

o Ul b WN B

41 Growing Significance of DataOps
The motivation of DataOps is to combine DevOps and Agile methodologies to manage
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data in alignment with business goals (Vaughan, 2019). DevOps is a blend of development
(representing software developers, including programmers, testers, and quality assurance
personnel ) and operations (representing the experts who put software into production and
manage the production infrastructure, including system administrators, database administra-
tors, and network technicians) (Huttermann, 2012). Capizzi et al. (2019) proposed that
DataOps aims to deploy data flow pipelines and toolchains in a cloud environment for re-
al-time adjustment of pipelines to meet actual operational needs. In contrast to traditional
software development methodologies, DevOps improves communication or collaboration a-
mong those in charge of the software deployment process and aims to produce high-
er-quality products faster and reliably.

One of the significant trends in data science is integrating DataOps with MLOps. As one of
the building blocks of data science, ML provides big data analysis with mythological founda-
tions. Data science usually leverages MLOps to deploy ML models in data science projects
reliably and efficiently. MLOps enables data scientists to monitor, validate, and govern ML
models throughout the process; collaborate with other business people; and enhance the
speed and quality of delivery for model development (Soh & Singh, 2020) .

4.2 The Rise of Citizen Data Scientist

Citizen data scientist is a new topic in data science. It is the kind of person who creates or
generates models that use advanced diagnostic analytics or predictive and prescriptive capa-
bilities but whose primary job function is outside the field of statistics and analytics (Gart-
ner, 2016) . In 2016, citizen data scientists came to prominence because users throughout
the business world wanted a democratized approach to big data and analytics (Shacklett,
2016) . Citizen data scientists possess more expertise than professional ones with regard to
particular application domains (see Table 1) .

Table 1 Citizen data scientist versus expert data scientist

Citizen data scientist Professional data scientist

) . . Outside the field of data science and big The field of data science and
Primary job function

data analytics big data analytics
Ability to understand business Higher Lower
requirements
Domain-specific expertise More Less
Readiness of data science Good Bad
knowledge or skills
Data science coding capability  Higher Lower

To select, interpret, and evaluate the candi-
Roles in data science projects  date solutions proposed by professional
data scientist

To provide candidate solutions
for citizen data scientists

The rise of citizen data scientists indicates that data science practices are dependent on
domain expertise. The selection, interpretability, and evaluation of models in data science
projects require knowledge or skills from the corresponding fields. Typically, citizen data
scientists focus on using data science tools but usually lack the ability to understand the
underlying principles of these tools. However, understanding these principles is crucial for
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selecting algorithms, optimizing models, and tuning their hyperparameters. The roles of
citizen data scientists and professional data scientists complement each other, and
collaboration between them is a new trend in data science practices.

4.3 Enabling Augmented Data Science

Augmented data science is a data-driven method in which software tools automatically
conduct data exploration and processing to assist data scientists in making decisions
(Uzunalioglu et al, 2019). Augmented data science stems from augmented analytics.
Augmented analytics is a next-generation data analytics paradigm that uses ML to automate
data preparation, insight discovery, and insight sharing for a broad range of business users,
operational workers, and citizen data scientists (Gartner, 2017). There are three main trends
for augmented data analytics:

1. augmented data preparation,

2. augmented analytics as part of analytics and business intelligence,

3. augmented data science or ML ( Gartner, 2018).

Augmented analytics could implement automatic analysis, reduce the difficulty of data
analysis for non-professional users, and help data scientists carry out data analysis tasks
efficiently and effectively.

Augmented data science is redefining the roles of man and machine in relevant practices.
Augmented data science simultaneously enhances the return on data science investments,
and reduces time to value, and expands the ML footprint. Experts become efficient and
productive, and a broader population of quantitative professionals could succeed in data
science ( Gartner, 2019). Augmented data science would promote the collaboration between
data scientists and scientists of specific application domain; thus, the human-machine
collaborative working pattern would be the first choice of data science solutions.

4.4 Integrating Data Warehouse with Data Lake

Recent trends in data science have led to a proliferation of studies that intend to integrate
traditional data warehouses with data lakes. There are complementary advantages between
data warehouses and data lakes from a data science perspective. For data science, data lakes
provide a convenient storage layer for experimental data, both the input and output of data
analysis and learning tasks (Nargesian, 2019). In sharp contrast to traditional data
warehouse technologies, data lakes support all data types, load all data from their source
system, and retain them in an untransformed or nearly untransformed state. Therefore,
integrating data warehouses with data lakes is the key to data science projects.

Most data science platforms will be built on a data lakehouse that combines data
warehouses and data lakes. A data lakehouse is a new generation of an open platform that
unifies data warehousing and big data analytics (Armbrust et al, 2021). Databricks
lakehouse, for instance, unifies data, analytics, and Al to provide a collaborative working
platform for data science projects (Databricks, 2021). Consequently, data lakehouse is
becoming one of the most commonly used solutions for data storage layers in data science.

4.5 Diversity of Domain-Specific Data Science

Introducing data science to other specific application domains has been a hot topic in
recent studies. These studies could be categorized into two groups: domain-general data
science and domain-specific data science. The former regards and nurtures data science as
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an independent new discipline. However, the latter discusses data science from a specific
application discipline. A new research trend of using data science for comprehensive studies
can be seen in traditional disciplines; hence, domain-specific data science has become an
emerging topic in application disciplines. Data science is applied in life science, health care,
government, education, and business management. Some new research topics, in turn,
emerge from these application areas, such as quantitative self, data journalism, and big data
analysis.

The diversity in domain-specific studies will advance a new research direction called
theoretical data science that bridges the gap between distinct domain-specific studies.
Theoretical data science is a new branch of data science which employs mathematical model
abstractions of data objects and systems to rationalize, explain, and predict big data
phenomena (Borjigin et al,, 2021) . Consequently, theoretical data science will further boost
the development of domain-general data science. The interdisciplinary research on data
science will not only provide efficient data science tools but also facilitate the
communication between data scientists and domain experts.

4.6 Implementing Data Story as Data Products

Data storytelling is an emerging research direction in data science. Essentially, data
storytelling is a form of persuasion that employs data, narrative, and visuals to help an
audience see something in a new light and convince them to act (Dykes, 2019). Storytelling
and visualization are complementary approaches for presenting big data in data science
studies. Data visualization is widely adopted in data storytelling in that a story needs to be
visualized to make key observations and details to build a picture in someone's mind
(Martin, 2018). Data visualization is a literary device to tell stories with data, and they are
two halves of the same coin (Ryan, 2018).

Data stories will be an alternative type of data product. However, data story and literacy
story differ in the following aspects (see Table 2) :

e Motivation: Data stories are only designed to meet a given business requirement, while
literary stories are created for general purposes, such as entertainment, education, and
recreation for all the audience. Data story only works for the target users in a specific
business life cycle.

e Content: The content of a data story has to be sourced from actual business data, but
that of a literacy story can stem from imagination, life experience, or hearsay.

e Creator: Data stories are automatically created by algorithms, whereas human beings
directly write a conventional literacy story.

e Lifespan: The lifespan of a data story is shorter than that of a literacy story in that the
former is strictly restricted to the corresponding business life cycle. An excellent data
story will expire when tasks of the business process are completed, while an excellent
literary story could be passed from generation to generation.

Table 2 The difference between the data story and the literary story

Data Story Literary Story
Motivation specific general
Content real fiction
Creator machine man

Lifespan short long
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5 OPPORTUNITIES AND CHALLENGES

The future development of data science should prioritize turning the four most acute
challenges into opportunities: (1) accelerating theoretical studies of data science, (2) the
trade-off between explainability and performance, (3) achieving data ethics, privacy, and
trust, and (4) aligning academic curricula with industrial needs.

5.1 Accelerating Theoretical Studies of Data Science

The most significant weakness of data science to date is the lack of systematic theoretical
studies. Despite the fact that data science is one of the hottest topics in recent academic
studies, the in-depth study of its theoretical framework is overlooked. There are no shared
understandings of the theoretical data science system and its essential components.
Furthermore, a few researchers tend to misuse data science as a new name for some old
approaches to data analysis or data processing, such as ML, statistics, data engineering, or
business intelligence. This weakness is becoming a new bottleneck for the future
development of data science.

Theoretical studies on data science can be promoted by integrating domain-general data
science with a diverse range of domain-specific data science. Borjigin et al. (2021) proposed
a new term "theoretical data science" to bridge the gap between the domain-general and
domain-specific studies and provide its five essential topics: (1) to conduct in-depth
theoretical research on data science, (2) to take advantage of the active property of big
data, (3) to introduce design of experiments into data science studies, (4) to shift data
science' research focus from correlation analysis into causality inference, and (5) to consider
data products development as one of the main tasks of data science projects. Also,
expanding the technical areas of today's consensus data science is crucial to theoretical
studies of data science. Donoho (2017 ) proposed a new field called greater data science that
is a better academic enlargement of statistics and ML than today's data science initiatives,
while accommodating the same short-term goals.

5.2 The Trade-off Between Explainability and Performance

The most critical challenge in data science practice is balancing its interpretability with
performance. Explainability and effectiveness are goals that have to be considered for
designing models for data science practice (Zhang & Chen, 2018 ). By default, simple models
should be used as much as possible unless the explainer explicitly asks for more complex
ones (Sokol & Flach, 2020). Explainability must consider the trade-off between accuracy and
fidelity and strike a balance between accuracy, explainability, and ease of processing
(Gunning et al., 2019).

The motivations of data science projects should be shifted from identifying correlation to
inferring causation. There has been a common mistake that data science focuses merely on
correlation rather than causation. During the earliest stages of data science, researchers tend
to focus on correlation instead of causation. However, ignoring causal analysis results in
lower trust in data science solutions.

Expertise in experimental design can help address the gap between correlation and
causation (McAfee & Brynjolfsson 2012). Besides, explainable artificial intelligence (XAI)
provides a new solution for balancing interpretability and performance. Existing XAI studies
could be divided into various groups from two distinct dimensions ( Rai, 2019):
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Whether the technique was model-specific or model-agnostic, model-specific techniques
only work with a given ML model. By contrast, model-agnostic techniques can be employed
in various ML models. For instance, a model-agnostic technique called LIME was used to
perturb input samples to observe the impact on the output results, whether the technique
provided a global explanation or a local explanation. The global explanation demonstrates
how to explain the model as a whole, involving the algorithm selection, training process, and
trained results. Alternatively, the local explanation aims to help people understand the
decision-making process of the trained model for a given input sample. Also, inferring
causality in data science needs to integrate domain-general data science with diverse
domain expertise.

5.3 Achieving Data Ethics, Privacy, and Trust

Data ethics, privacy, and trust problems are the potential risks for data science practices.
Data security threats come from a diverse range of factors, including confidentiality,
integrity, availability, and privacy (Talha et al., 2019). Furthermore, an ethical expert should be
included in a data science project to avoid "Bias In, Bias Out (BIBO)" (Ho & Beyan, 2020).
Data bias, such as survivorship bias and Simpson's and Bergson's paradoxes, probably occurs
at any stage in the data science life cycle. Explainable artificial intelligence is an approach to
verifying the presence of algorithmic bias (Sen et al., 2020). Besides, user authentication and
consent regarding the use of personal data are critical for protecting ethics and privacy.

Data masking and data auditing are essential to achieving data ethics, privacy, and trust.
Data masking is implemented by replacing or deleting original personal (or organizational)
sensitive data without affecting the accuracy of the data analysis results to avoid security
risks and privacy issues. Data auditing can help data scientists ensure data integrity, control
data quality, and prevent data leakage. Data masking and auditing are effective ways to
achieve data ethics, privacy, and trust in data science projects. They are essential for data
scientists to gain insights from big data following the user's preference.

5.4 Aligning Data Science Curricula with Industrial Needs

The shortage of data scientists is becoming a serious constraint in some sectors
(Davenport et al., 2012). The main challenges of higher education in cultivating qualified data
scientists are rooted in three factors:

1. the curriculum is loosely coupled with data science practices; therefore, data science

major is merely an alternative title for traditional majors, notably statistics or ML;

2. some essential courses such as exploratory data analysis, design of experiment,

causality, and data product design are missing in data science majors;

3. student's poor capability to address real-world challenges.

At present, there is no single model in terms of the department, school, or cross-unit
collaboration within higher education institutions that should take responsibility for data
science education.

A study conducted by Bojigin et al. (2011) found that the qualifications for data scientists
could be divided into two categories: data science-specific qualifications and general
purpose-oriented ones. Data science-specific qualifications include SQL programming,
Python/R/SAS, Hadoop MapReduce/HBase/Hive, Spark/Storm, Visual Analysis with Tableau,
ETL, Data Warehouse/Data Lake/BI, Statistics, ML (including deep learning), natural language
processing, text analysis, and computer vision. General purpose-oriented qualifications
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involve the candidate's readiness for communication and cooperation, problem-solving, 3C
characteristics of data scientists, independent learning, attention to detail, stress
management, and leadership skills (Bojigin et al., 2021). Therefore, the top-level design of
data science curriculums in higher education should meet these industry needs as well as
their further evolutions.

6 CONCLUSIONS

The gap between data and knowledge is at the highest level in the early stages of the big
data era. Traditional knowledge cannot match the new data created by or stored in cloud
computing, the IoT, mobile internet, and emerging scientific instruments or manufacturing
equipment. The contradiction between new data and traditional knowledge is the biggest
challenge faced by most traditional sciences. Computer science and statistics first perceived
this challenge and proposed a new science called data science from their distinct
perspectives. Then, other disciplines noticed that gap and conducted interdisciplinary
studies. Consequently, data science is a rapidly growing academic field and has tremendous
implications for all traditional studies today. However, the relevant studies failed to conduct
in-depth research on the theoretical system of data science, and there is doubt whether data
science can be considered an independent science.

A significant finding from this study is that data science includes unique research goals,
distinct perspectives, and an independent body of knowledge. The study contributes to our
understanding of core theories, recent developments, and emerging trends in data science.
Future work should focus on establishing theoretical systems of data science, especially to
accelerate theoretical studies of data science, address the paradox between usability and
interpretability of big data solutions, achieve big data ethics, privacy, and trust, and align
data science curriculums with industrial needs.
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