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ABSTRACT

This paper reviewed the fruitful achievements in the science of science, sociology of science and
economics of science, and their benefits to scientometric research. Then, the causal inference
was introduced, which has the potential to shape scientometric research by determining the
cause and effect among variables. In the end, we proposed two detailed reasons why we need
causal inference in scientometric research: (1) correlation-based scientometric research is not
sufficient to support science & technology policy; (2) Scientometrics needs to go beyond
metrics by explaining the mechanisms in science.
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1 Introduction

Scientometrics is the "quantitative study of science, communication in science, and science
policy" (Hess, 1997). Its development is based chiefly on the contributions of Derek J. de Sol-
la Price and Eugene Garfield (Nalimov & Mulchenko, 1969; Garfield, 2009). In 1963, earlier
before he published his milestone book Little Science, Big Science, which laid a theoretical
foundation for Scientometrics research, Price met and started a lasting collaboration with
Garfield, who created the Science Citation Index and made it possible to conduct quantita-
tive research on scientific publications and their connections. In his milestone lecture "The
Scientific Foundations of Science Policy" given in 1965, Price observed that as science grew
exponentially, it presented new challenges to policy-makers and that they could be helped
by the kind of Scientometric work he was carrying out and promoting (Nature, 1965).

Scientometrics has developed towards research evaluation and measurements during the
past half a century, without many breakthroughs in research methods or techniques. On the
one hand, scientists generate vast amounts of data in their research activities: papers and
patents and their use, project applications, peer-review comments, etc., under data-driven
science (Chen et al, 2022; Islam et al., 2022). Along with the industrialization of science,
more and more datasets are available online, such as Scopus, PubMed, Google Scholar, Mi-
crosoft Academic Graph (MAG), and the U.S. Patent. The increasing data availability enables
data-driven research targeting scientific literature and scientists (Fortunate et al., 2018; Zeng
et al., 2017). In this case, the science of science (SciSci) stands out and overshadows Sciento-
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metrics by publishing in journals with a wide readership, such as Nature, Science, and the
Proceedings of the National Academy of Sciences of the United States.

Bernal (1939), as the pioneer of SciSci, systematically illustrated the function of science,
planning science, and the relationship between science and politics. His milestone book, the
Social Function of Science, has profound significance across the scientific community. The
newly rising SciSci discussed by Albert-Ldszlé Barabadsi (Fortunato et al.,, 2018; Sinatra et al.,
2016; Wang et al., 2013) & Dashun Wang (Yin et al., 2021), James Evans (Wu et al., 2019; Xu
et al,, 2022), Brian Uzzi (Yang et al,, 2022; Jin et al,, 2021), et al. in the past decade, differs
Bernal's SciSci in that big data dominates their research. SciSci aims to quantify scientific be-
haviours, uncover predictable patterns, understand the mechanism driving science, and re-
formulate policies to stimulate innovations (Bourdieu, 2014; Zeng et al., 2017). According to
Fortunate et al. (2018), the five topics of the SciSci include (1) network of scientists, institu-
tions, and ideas; (2) problem selection, e.g., productive tradition or risky innovation, as dis-
cussed by Kuhn (1977) and Bourdieu (1975); (3) novelty, as measured by the Z score based
on the co-citation relationship of journal pairs in references (Uzzi et al., 2013); (4) career dy-
namics, including funding allocation, tenure track, gender inequality, scientific mobility, etc,;
(5) team science.

On the other hand, Scientometrics is known for uncovering "what", including patterns and
laws in science, e.g., interdisciplinarity is associated with scientific innovation, rather than ex-
plaining mechanisms in science, e.g., how interdisciplinarity affects scientific innovation. The
causal inference method in economics may address the causality between the two variables.
Economists also target scientific literature in their research ever since World War II (Nelson,
1959; Hicks, 1995), which is the core of economics of science (EcSci). The developing process
of the EcSci can be classified into two phases: the traditional EcSci and the new EcSci. From
the 1950s to the 1980s, the former acknowledged that knowledge of science contributed to
technological change (Arrow, 1962; Nelson, 1959). Note that this is a simple linear relation-
ship between science and technology development. However, this statement could not sup-
port the evidence that Japan, whose fundamental subjects are weak, owns prominent tech-
nology. Since the 1980s, the latter has been proposed to improve the classic approach of Ar-
row and Nelson (Partha, 1994).

The differences between traditional and new EcSci mainly display in three aspects. Firstly,
the economists disproved the theory proposed by Arrow and Nelson. Hicks (1995) found
that the large corporation published as many articles in American journals as a medi-
um-sized research university. Secondly, the scholars utilized the methods from economics or
theories from other disciplines to explore the mechanism of academic activity. Economists
introduced the theory proposed by sociologists Merton and Merton (1968) to examine the
mechanism of the scientific award system and found that there exists a phenomenon called
winner-take-all, which makes the competition among scientists fiercer. Lastly, economists
began to explore the relationship between science, innovation, and economic growth. For in-
stance, Funk and Owen-smith (2017) proposed a CD index to quantify the degree of techno-
logical change. Azoulay et al. (2019) found that after the death of a star scientist, the flow of
the articles by collaborators and non-collaborators decreased and increased by 8.6, respec-
tively. Catalini et al. (2020) found that a low-cost airline can improve collaboration.

Apart from economists, sociologists also explain mechanisms in science by conducting
epistemic practice and empirical research on "science", which is named the sociology of sci-
ence (SocSci). It links science with social structure by using the "conceptual frameworks" of
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sociology. Different from historians of science who attributed the development of science to
the intelligence of scientists, the sociologists focus more on the norms and organizations
through which "science" is practised and explore the bidirectional causality between science
and society, that is, how social factors influence science and how science affects society (Cole
& Cole, 1973). When sorting out the development of the SocSci, we have to mention the
most well-known sociologist Robert K. Merton and his enormous contributions to the disci-
pline. His doctoral dissertation on the growth of science in England during the 17th century
contains most of his research achievements, which profoundly impact his later studies (Mer-
ton, 1938; Cole, 2004). Merton (1968) published a milestone paper titled "The Matthew effect
in science" in Science. Stephen Cole and Jonathan Cole, both of whom were students of
Merton, are also prominent sociologists of science. They first introduced citation analysis into
the scientific evaluation. They applied citation analysis to elaborate on social stratification in
the scientific community (Cole, 1973). One of the exciting studies they have made is whether
scientific progress is built on the labour of all "social classes" or is primarily dependent on
the works of "elites". The Newton hypothesis believes that scientific progress "stands on the
shoulder of giants." In contrast, the Ortega hypothesis argues that "experimental science has
progressed thanks in great part to the work of men astoundingly mediocre, and even less
than mediocre” (Ortega, 1932). Cole & Cole (1972) investigated three datasets made by
physicists and the corresponding outstanding works and found evidence against Ortega's
hypothesis.

SocSci differs the SciSci and Scientometrics in that it is theory-driven rather than data-driv-
en. For example, Erin Leahey and her colleagues explored the impact of interdisciplinarity on
scientists' research (Leahey et al., 2017). Instead of drawing conclusions and discussing po-
tential implications from the data, they started this paper with the production and reception
effect, based on which they proposed five hypotheses. Then, they tested the hypotheses by
analyzing around 900 scientists and their 32,000 articles. At the end of the paper, they high-
lighted their contributions to organizational theory.

Scientometrics will benefit from examining causal inference to address the "how" and
"why" questions on science. This paper highlights the importance of the counterfactual
framework of causal inference as a research method in Scientometrics and explains the po-
tential benefits.

2 Causal inference

The 2021 Nobel prize in Economics was awarded to David Card, Joshua D. Angrist, and
Guido W. Imbens for their "Empirical research in the field of economics using causal infer-
ence" (https://www.nobelprize.org/). Causal inference uncovers causal relationships and pro-
vides clear implications to simple cause-and-effect questions in social science (Dunning,
2012, p. 3-14). For example, when we explore whether college education enhances future in-
come, correlation analysis illustrates that people who attend college earn more on average
than those who do not. However, many confounding variables are ignored in correlation
analysis, such as personal ability, family background, social connections, etc. These factors
make the estimates inaccurate. Nevertheless, casual inference can address this issue.

2.1 Experiments

The earliest experiments for causality happened. Fisher et al. (1923a, 1923b, 1923c) pro-
posed randomized trials, which highlight the existence of causality and are the breakthrough
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in statistical methodology. Marshall (1948) introduced randomized controlled trials (RCT)
about using streptomycin for pulmonary tuberculosis, deemed the first RCT in history. We u-
tilize RCT, which is by far the most credible experiment, to overcome selection bias. An ex-
periment is accomplished by randomly allocating subjects to two or more groups, treating
them differently, and then comparing them concerning a measured outcome. The treatment
group receives the assessed intervention, while the other, usually called the control group,
does not. By randomizing the allocation process, we ensure that the control group and the
treatment group are not systematically different from each other. In this way, we have an
observed effect that equals the actual causal effect.

RCT has limitations: (1) conducting an RCT is often budget- and time-consuming, and (2)
RCT is not applicable when it is contrary to ethics. For example, it is not ethical to randomly
allocate volunteers to smoke if we use RCT to address the question, "is smoking harmful to
our health?" In this case, an alternative method is a quasi-experiment.

2.2 Quasi-experiments

The quasi-experiment method was recognized when Rubin (1974) proposed the counter-
factual framework. Subsequently, Angrist and Krueger (1991) outlined a new framework for
causal inference in random assignment settings. They utilized instrumental variables, which
economists have long used regression models with constant treatment. They found that the
instrumental variables (IV) can be fitted into Rubin's causal model without assuming constant
treatment effects. An example of IV in economic textbooks is to examine the relationship be-
tween compulsory school attendance and future income (Angrist & Pischke, 2009). Both vari-
ables are associated with latent variables, including personal ability, effort, family back-
ground, etc. Angrist and Krueger (1991) used the birth quarter as an IV for compulsory
school attendance because a person's birth quarter is not associated with her ability, effort,
or family background but differentiates the years of education®.

Thistlethwaite and Campbell proposed (1960) regression-discontinuity design (RDD) to e-
valuate the effectiveness in social sciences. Economists have attempted to reinforce related
theories and normalize the application forms (Hahn et al., 2001), which makes this method
more widely used in social sciences (Imbens & Kalyanaraman, 2012). RDD is the most similar
to RCT. The core idea of this method is that individuals near the cutoff point formed by poli-
cy intervention are similar and comparable. Then, differences in outcomes between individu-
als on both sides can be attributed to policy interventions. RDD is extensively utilized to e-
valuate educational policy (Angrist & Lavy, 1999), retirement policy (Muller & Shaikh, 2018),
social security policy (Bernal et al., 2017), Public finance and housing policy (Artés & Jurado,
2018). Ebenstein et al. (2017) estimated the effect of air pollution on life expectancy by using
China's Huai river as the cutoff point, i.e., north China of the Huai river supplies a heating
system, but south China does not. They found that when airborne particulate matter, espe-
cially matter smaller than PMy, , increased by 10-ug/m?, life expectancy will be reduced by
0.64 years.

Rosenbaum and Rubin (1983) first proposed propensity score matching (PSM) to eliminate
selection bias. The propensity score replaces multiple covariates with one score and balances
the distribution of covariates between the treatment group and the control group.

1 The compulsory laws in the United States require students to be at least six years old before January 1 of enroliment and re-
main in school until their 16th or 17th birthday, which compels students born at the start of the year to attend school longer than
those who born at the end of the same year.
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In 1915, Obenauer and von der Nienburg (1915) utilized differences in differences (DID) to
explore the effects of the minimum wage law and introduced this method into economics.
DID aims to estimate the treatment effect and compare the difference between pre-treat-
ment and post-treatment. The treatment effect is that we subtract the change of the control
group from the change before and after treatment. Note that DID assumes that the experi-
mental and control groups must have the same trend before processing, which is called the
"Parallel trend" or "Common trend" assumption.

3 Causal inference in scientometric research

3.1 Trend of using causal inference in scientometric research

Using "causal inference" and related methods such as "propensity score matching”, "in-
strumental variables”, "differences in differences”, and "regression discontinuity" (including
their abbreviations) as retrieval terms, we search the articles that use the causal inference
method to conduct scientometric research in the Web of Science and the Chinese Social Sci-
ence Citation Index (CSSCI) database, respectively. Figure 1 shows that (1) in general, related
research is still in its infancy, i.e.,, the Web of Science database indexes 54 papers, and the
CSSCI database includes only 10; (2) scientometric research using causal inference has in-
creased significantly since 2019; (3) Chinese publications are less than English ones.

Figure 1 Number of articles using causal inference in scientometric research over years

3.2 Causal inference explains the causal relationship between variables in sci-

entometric research

Before the introduction of causal inference to Scientometrics, the majority of scientometric
research remained as descriptive statistics, hypothesis tests, correlation analysis, etc. To ad-
dress the research question, "to what extent research funding contributes to scientists' suc-
cesses? " a scientometric study may explore the association between research funding and
future success chances by comparing the research performance of the scientists who were
funded and that of the scientists who were not. However, there is selection bias in this re-
search design because the scientists who were funded have more significant research poten-
tial than those who were not. In this case, the successes might be attributed to the scientists'
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research potential. A quasi-experiment design can eliminate this selection bias by comparing
the research performance of the near-miss and the narrow-win scientists, as shown in the
RDD by Bol et al. (2018) and Wang et al. (2019). The policy implication is obvious after they
explain the causal relationship between research funding and career successes. Bol et al.
(2018) won the Best Paper Award of ISSI 2019 because of their innovative research design.

To address another research question, "is there a bias towards authors' reputation in peer
review?" a scientometric study may explore the correlation between authors' reputation and
the acceptance rate of their submissions. However, there is selection bias in this research de-
sign because higher reputation authors might have more significant research potential, and
their higher acceptance rate is attributed to their higher research potential to a certain ex-
tent. An RCT design can eliminate this selection bias by randomly designating a manuscript
co-authored by a prominent (such as the 2002 laureate of the Nobel Memorial Prize in Eco-
nomic Sciences) and a relatively unknown early-career scientist to reviewers in three different
ways: (1) only the prominent author's name appearing in the manuscript, (2) an anonymized
version of the paper, or (3) only the less early-career author's name appearing in the
manuscript, as shown in Huber et al. (2022). As a result, significantly more peers accept the
invitation to review the paper when the prominent author appears as the corresponding au-
thor. Then, there is solid evidence of bias toward authors' reputation in peer review.

4 Reasons why we need causal inference in scientometric research

4.1 Correlation-based scientometric research is not sufficient to support sci-

ence & technology policy

Analysis of existing data shows that funded teams accumulate more citations than
less-funded teams (Wuchty et al., 2007). Does it mean that science & technology (S&T) poli-
cy should be adjusted to allocate more funding to the former? The work of interdisciplinary
teams received fewer citations (Sun et al., 2021). Should we discourage interdisciplinary re-
search hence? We do not know whether the extra citations are brought by the funding or
other factors, such as team size, authors' reputation, affiliations' reputation, etc. We do not
know whether interdisciplinary teams of other factors, such as low research quality and low
efficient collaboration, bring fewer citations. Therefore, it is risky to adjust S&T policy based
on correlation results.

Instead, the causal relationship provides more solid evidence for S&T policy. For example,
Bol et al. (2018) found the funding effect, i.e., "winners just above the funding threshold ac-
cumulate more than twice as much funding during the subsequent eight years as non-win-
ners with near-identical review scores that fall just below the threshold", because non-win-
ners may cease to compete for other funding opportunities. In this case, the S&T policy
should be adjusted to raise the funding rate rather than to distribute the funding to a minor-
ity of applicants.

Nevertheless, the limitations of correlation analysis do not mean that science will abandon
this method. Instead, correlation analysis uncovering associations between variables that
have never been uncovered also reaches theoretical contributions. We observe the associa-
tion between interdisciplinary research and scientific innovation (Leahey et al., 2017), then in-
terdisciplinary research is encouraged in science policy in many countries. There are many
patterns of interdisciplinary research which depend on the number of scientists, disciplines,
genders, career stages, institutions, or countries involved. It is unnecessary to figure out the
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causal relationship between each pattern of interdisciplinary research and scientific innova-
tion before issuing an encouraging policy. However, it does not mean that exploring the
causal relationship is unnecessary. Instead, results based on causal relationships help us re-
think the relationships between the two variables. For example, Liu et al. (2021) found that
interdisciplinary collaboration research is less disruptive, as defined by Wu et al. (2019), than
monodisciplinary research by using the method of matching.

4.2 Scientometrics needs to go beyond metrics by explaining the mecha-
nisms of science

Wau et al. (2022) reviewed the development of SciSci and Scientometrics and linked metrics
of science to mechanisms of science. In this paper, most of the metrics they concluded are
from Scientometrics. However, most of the mechanisms are from the SocSci and the EcSci,
such as the Matthew effect in science (Merton, 1968), the "black box of science" for concept
establishment (Latour, 1987), the "burden of knowledge" for research collaboration (Jones,
2009), etc.

Scientometric indicators, such as the number of publications/citations, are usually used to
measure scientific successes. An example introduced by Nature (2022) is that, according to
this norm, scientific research has been very successful on Covid-19 because many related pa-
pers have been published and received many citations since its outbreak. However, research
on Covid-19 has not achieved any breakthroughs so far. Therefore, there is a gap between
the information conveyed by scientometric indicators and our understanding of science. The
gap can be narrowed by explaining mechanisms in science. Causal inference is not the u-
nique way to explain the mechanisms in science but an effective way of determining which
variable is the cause and which is the effect. For example, Zhao et al. (2020) observed that
Chinese returnees are more productive after they return to China. According to the results
from PSM+DID, the mechanism beyond is that the higher productivity is caused by the re-
search environment provided by Chinese universities and institutions.

It is not difficult for scientometric research to uncover the correlation between interdisci-
plinary research and scientific innovation. However, we know little about how interdisci-
plinarity affects scientific innovation from scientometric research. It is expected to explain the
mechanisms of scientific innovation after uncovering the correlation between interdisci-
plinary research and scientific innovation to help us better understand science. One may ar-
gue that it is the job of the science of science, the EcSci, or the SocSci to explain the mecha-
nisms in science. Nevertheless, scientometric research, which uncovers laws and explains
mechanisms in science, is fascinating and attracts more young talents to this field.

5 Conclusions

We first reviewed the fruitful achievements in SciSci, SocSci, and EcSci, and their potential
influence on scientometric research. Second, we introduced causal inference, including RCT
and quasi-experiments. Third, we retrospectively reviewed the use of causal inference in sci-
entometric research. Last, we concluded two reasons why we need causal inference in Scien-
tometric research: (1) correlation-based scientometric research is insufficient to support sci-
ence & technology policy; (2) Scientometrics needs to go beyond metrics by explaining the
mechanisms of science.

Causal inference has excellent potential to shape Scientometrics by determining the cause
and effect among variables and explaining the mechanisms of science. For example, a
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promising picture of scientometric research on interdisciplinary research and scientific inno-
vation is that how interdisciplinarity affects scientific innovation is fully explained based on
their correlation. In this case, science policy will target scientific innovation with higher preci-
sion. Casual inference goes beyond the metrics, descriptive statistics, and correlation be-
tween variables. Using open science and open data under data-driven science, Scientomet-
rics has a bright future by diversifying research methods. The easiest way for scientometric
research to achieve this goal is to ask "how" or "why" after we identify the correlation be-
tween two variables.
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